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ABSTRACT
Introduction: The purpose of this study was to evaluate and compare the features of the initi-
ation and development of oxidative stress in patients with osteomyelitis and burns. Methods:
We studied the oxidative metabolism of blood of 20 healthy subjects (controls), 15 patients with
burns, and 18 patients with chronic osteomyelitis. All patients included in the second group had
thermal burns of the I-II-III degree in trunk and limbs on an area of 31 - 80% of the body surface
without thermal inhalation trauma. After standard sample preparation, a wide range of parameters
of oxidative metabolism was determined in the blood. The intensity of free radical processes in
blood plasma and red blood cells, and the total antioxidant activity was evaluated by Fe-induced
biochemiluminescence. The concentration of malonic dialdehyde in blood plasma and red blood
cells was determined. The level of diene and triene conjugates and Schiff bases was determined
spectrophotometrically using reagent kits. The catalase and superoxide dismutase activities in the
red blood cells of patients from each of the groups was also determined. Results: We showed that
in osteomyelitis, which is a long-lasting process, changes in the balance of free radical generation
and activity of the antioxidant system were compensatory and mostly related to changes in blood
plasma. On the contrary, in burn victims, oxidative stress signs had a maladaptive character. They
were seen in blood plasma and red blood cells, and accompanied by a pronounced depletion of
enzyme antioxidant system reserves. Conclusion: Our study demonstrate the role of oxidative
stress in patients with burns and chronic osteomyelitis, and demonstrate some specific features
leading to formation of disease pathology. Such features of oxidative stress may be useful in future
design of new approaches to correct the pathology of diseases.
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INTRODUCTION
It is known that the reactions of free radicals and
the opposing activity of a wide range of antioxi-
dant systems are the fundamental basis for various
aspects of the functioning of cells and tissues1–4.
In particular, they contribute to the renewal of cel-
lular structures and processes, including biological
membranes, energy metabolism, and phagocytic re-
actions1,4–7. All of these processes, combined with
oxidative metabolism, can be utilized to disrupt un-
derlying conditions of various pathologies 4,8–11. This
disruptive condition is called oxidative stress, and can
be regarded as a complex universal syndrome8,12–15.
In the laboratory, signs of oxidative stress include a
pronounced activation of free radical processes, ac-
companied by a significant inhibition of the corre-
sponding blood and tissue systems5,13,15–17.
Indeed, despite confirmation in literature of the sig-
nificant role of oxidative stress in the pathogenesis of
various diseases, the specificity of its implementation
in a particular pathology is still poorly understood. To

a greater extent, this applies to surgical diseases, in-
cluding traumatological and orthopedic pathologies.
A few studies have been recently devoted to this issue.
Thus, there is evidence of the involvement of oxidative
stress in the pathogenesis of thermal trauma18–21 and
chronic post-traumatic inflammatory processes, such
as osteomyelitis22–24. However, there is no informa-
tion about the formation and progression of oxida-
tive stress in these diseases. The purpose of the study
herein was to conduct a comparative evaluation and
analysis of the features of the formation and develop-
ment of oxidative stress in patients with osteomyelitis
and burns.

MATERIAL - METHODS

Patient and control groups

We studied the oxidative metabolism of blood of 20
healthy subjects (control), 15 patients with burns, and
18 patients with chronic osteomyelitis. All patients in-
cluded in the second group had thermal burns of the
I-II-III degree in the trunk and/or limbs (on an area
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ranging from 31 - 80% of the body surface); these pa-
tients were absent of thermal inhalation trauma. After
receiving the study participants’ voluntary informed
consent, blood samples from patients of the second
and third groups were obtained at admission to the
hospital. In patients with burns, blood samples were
taken up to 4 days after the moment of injury.

Laboratory assays
After standard sample preparation, a wide range of
parameters of oxidative metabolism was determined
in the blood. In particular, the intensity of free radical
processes in blood plasma and red blood cells, as well
as the total antioxidant activity, were evaluated by Fe-
induced biochemiluminescence. In addition, the con-
centration ofmalonic dialdehyde in blood plasma and
red blood cells was determined. The level of diene and
triene conjugates, and of Schiff bases, was determined
spectrophotometrically using reagent kits. Catalase
and superoxide dismutase activities in the red blood
cells of patients from each of the designated groups
were also determined.

Statistics
Theresults were processed using the Statistica 6.0 pro-
gram13. All the data were processed using standard
algorithms of descriptive statistics andwere presented
as Mean±SD.The Student’s t-test was used for the de-
tection of statistical differences (p < 0.05 was set as the
statistical significance level).

RESULTS
It was discovered that the integral indicator of the
intensity of free radical processes in blood plasma
and red blood cells (the light sum of Fe-induced bio-
chemiluminescence) showed intergroup differences
(Figure 1).
Thus, there is a stimulation of free radical oxidation
in the blood plasma of patients with burns and os-
teomyelitis. This trend is expressed equally (+ 27.8%
and + 27.1% relative to practically healthy people, re-
spectively; p < 0.05 for both cases). On the con-
trary, in the group of patients with osteomyelitis in red
blood cells, the indicator values does not differ from
that of the control level. However, in severely burned
patients, its moderate increase was recorded (+ 8%;
p < 0.05 relative to practically healthy people). This
indicates the presence of certain features of a shift in
oxidative metabolism in the diseases under consider-
ation.
Moreover, the variability of changes is manifested
in the total antioxidant activity of blood plasma

(Figure 2). It should be noted that both burns and
chronic osteomyelitis show a decrease in antioxidant
potential of the plasma. Together with an increase in
the intensity of free radical processes, this will allow
us to record the formation of oxidative stress in both
diseases. Simultaneously, the severity of the decrease
in the total antioxidant activity is not the same. In
particular, in osteomyelitis, the reduction in the in-
dicator level is 20.4%. In contrast, in patients with
burns, a decrease in the parameter value was recorded
by 7.8% (p < 0.05 for both cases compared to practi-
cally healthy people). Simultaneously, the antioxidant
activity of blood plasma in severely burned patients is
1.16 times higher than in osteomyelitis (p < 0.05).
Analysis of the level of malonic dialdehyde in blood
plasma and red blood cells also allowedus to verify the
specificity of the implementation of oxidative stress in
burns and chronic osteomyelitis (Figure 3 and Fig-
ure 4). Indeed, in the blood plasma, the concentra-
tion of the secondary product of lipid peroxidation in-
creases only in patients with chronic osteomyelitis (by
25.6% relative to the control group; p < 0.05), while in
patients with burns, it remains at the level of practi-
cally healthy people (Figure 3).
On the contrary, the concentration of malonic dialde-
hyde in red blood cells increases in representatives of
both groups (osteomyelitis and burns), but this trend
is expressed differently (Figure 4). Amore distinct in-
crease in the red blood cell level of the compound was
observed in the burn group (1.54-fold increase com-
pared to healthy group; p < 0.05) than in the chronic
osteomyelitis group (+ 39.1%; p < 0.05). It should be
noted that the concentration ofmalonic dialdehyde in
burns is significantly higher than in osteomyelitis (by
10.5%; p < 0.05).
According to the assessment results of the level of
other lipid peroxidation products, less significant
changes were revealed (Figure 5). A moderate in-
crease was found only for diene conjugates, and these
changes were expressed almost equally in patients
with burns and osteomyelitis (+ 9.7 and + 12.8% rela-
tive to the control group, respectively; p < 0.05).
We also evaluated the state of the enzyme antioxidant
systems in the patient groups (Figure 6 and Figure 7).
It was found that the pathologies had a multidirec-
tional effect on the activity of erythrocyte superoxide
dismutase (Figure 6). Thus, in chronic osteomyeli-
tis, moderate activation of the enzyme was noted (by
10.6% relative to practically healthy people; p < 0.05).
In patients with burns, there was a significant inhibi-
tion of the enzyme (by 20.3%; p < 0.05).
Analysis of red blood cell catalase activity revealed
activation only in chronic osteomyelitis (1.25-fold

4287



Biomedical Research and Therapy, 8(3):4286-4293

Figure 1: The intensity of free radical processes in blood plasma and erythrocytes in healthy people and
patients with chronic osteomyelitis and burns (”*” – level of statistical differences to healthy people; p < 0.05).

Figure 2: Total antioxidant activity in blood plasma and erythrocytes in healthy people and patients with
chronicosteomyelitis andburns (”*”— level of statistical differencewhen compared tohealthy people; p< 0.05).
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Figure3: Malonic dialdehyde level inbloodplasma inhealthypeople andpatientswith chronic osteomyeli-
tis and burns (”*” – level of statistical differences to healthy people; p < 0.05).

greater than that of the control group; p<0.05), while
in severely burned patients, the enzyme’s properties
and function remained at the physiological level.

DISCUSSION
It is known that oxidative stress is a universal patho-
logical process (syndrome) that develops in various
diseases and conditions8–17. Simultaneously, there
is relatively little information about the specificity
of changes in the balance of free radical processes
and antioxidant systems in blood and tissues formed
within the framework of oxidative stress in specific
pathologies1,4,5. Therefore, this study attempted to
establish the features of specificity for oxidative stress
in traumatic pathologies (e.g. burns and chronic os-
teomyelitis).
The study demonstrated the general signs and fea-
tures of the implementation of oxidative stress in os-
teomyelitis and burns. Indeed, the presence of this
syndrome in both pathological conditions was con-
firmed by the detection of characteristic laboratory
shifts, including the intensification of free radical ox-
idation in the blood plasma, as well as suppression
of its antioxidant reserves. These results confirm our
previously published results18–25 and those of other

authors19,20,23,26,27. At the same time, the persistent
nature of these disorders is emphasized by the detec-
tion of increased levels of diene conjugates which in-
crease about equally in patients with burns and os-
teomyelitis.
On the other hand, there are some features of oxida-
tive stress in the evaluated pathological conditions.
Particularly, we suggest that the changes are more re-
lated to free radical reactions occurring in the blood
plasma in chronic osteomyelitis. This is evidenced
by the absence of shifts in Fe-induced biochemilumi-
nescence in the membranes of red blood cells in this
pathology and a more pronounced decrease in the to-
tal antioxidant activity in blood plasma than in pa-
tients with burns. In addition, in osteomyelitis, an
increase in the plasma concentration of malonic di-
aldehyde was observed, which was absent in severely
burned patients. Finally, the synchronization of the
pathological process in osteomyelitis contributes to
the formation of compensatory rearrangements of the
enzyme antioxidant system23,24, as evidenced by a
moderate increase in the activity of erythrocyte su-
peroxide dismutase and catalase. We assume that this
circumstance is responsible for the lower severity of
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Figure 4: Malonic dialdehyde level in erythrocytes in healthy people and patientswith chronic osteomyeli-
tis and burns (”*” — level of statistical differences to healthy people; p < 0.05).

oxidative metabolism changes in the red blood cells
of patients with chronic osteomyelitis.
On the contrary, in burn victims, changes in free
radical processes fully affect both blood plasma and
red blood cells. This is indicated by a significant in-
crease in the light sum of Fe-induced biochemilumi-
nescence as an integral indicator of the intensity of
lipid peroxidation and other free radical reactions in
blood plasma and red blood cells. Also, this patho-
logical condition (burn) is characterized by a more
pronounced increase in the red blood cell concentra-
tion of malonic dialdehyde, in combination with an
increase in the level of diene conjugates, than in os-
teomyelitis. This may indicate that the process is ac-
tive. In addition, it should be emphasized that an
acute thermal burn injury does not involve the inclu-
sion of compensatory mechanisms, in particular, en-
zyme antioxidant systems18,20,21,26,28. This leads to
a rapid depletion of their reserves during the condi-
tions of intensification of free radical formation. This
is indicated by the inhibition of erythrocyte superox-
ide dismutase activity detected in burns, which en-
sures the formation of distinct signs of oxidative stress
in the red blood cells of patients in this group.

CONCLUSION
The study herein enabled the verification of oxidative
stress in patients with burns and chronic osteomyeli-
tis. The specificity of the formation of the patholog-
ical syndrome (oxidative stress) was found. We have
shown that in osteomyelitis, since it is a long-lasting
process, changes in the balance of free radical gen-
eration and the activity of the antioxidant system are
compensatory and mostly relate to changes in blood
plasma. On the contrary, in burn victims, oxidative
stress signs have a maladaptive character. Oxidative
stress is seen in blood plasma and red blood cells, ac-
companied by a pronounced depletion of enzyme an-
tioxidant system reserve. The findings of the oxida-
tive stress features may prove useful in determining
a different approach to the correction of pathological
conditions, such as burns and osteomyelitis5,25,28–30.

ABBREVIATIONS
AOA: antioxidant activity
DC: diene conjugates
TC: triene conjugates
ShB: Schiff bases
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Figure 5: Level of diene (DC) and triene conjugates (TC) and Schiff bases (ShB) in blood plasma in healthy
people and patients with chronic osteomyelitis and burns (”*” – level of statistical differences compared to
healthy people; p < 0.05).
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