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Effects of Orychophragmus violaceus extract OVS-2 on the
structure and diversity of intestinal flora in mice with radiation
intestinal injury
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ABSTRACT
Introduction: Orchophragmus violaceus (OV) has a rich history of use in traditional Chinese
medicine, spanning millennia. Its diverse physiological properties, such as anti-radiation, antibac-
terial, antitumor, and hepatoprotective effects, have garnered widespread recognition. This study
aims to elucidate the potential of OV extracts to mitigate radiation-induced intestinal injury (RIII)
and its impact on the intestinal microbiota. Method: OVS-2, extracted and isolated fromOV seeds,
was administered to C57 mice following abdominal irradiation (IR) with 60Co rays for RIII. Tissue
samples from the small intestine and fecal matter were collected from three groups of mice three
days post-administration for histological examination (HE staining) and 16S rRNA fecal intestinal
flora sequencing. The composition of the intestinal flora was analyzed through 16S rRNA gene am-
plification. Result: In vivo experiments demonstrated that OVS-2 supplementation improved the
survival rate of mice and mitigated radiation-induced damage to intestinal villi and crypts to some
extent. The relative abundance of Firmicutes, Bacillus, and Lactobacillus decreased in the experi-
mental group compared to themodel group, while that of Actinobacteria, Erysipelotrichaceae, and
Dunaliella increased. LEfSe analysis revealed an increased relative abundance of Faecalibacterium,
Dunaliella, Erysipelotrichales, andother bacteria, indicating their potential importance in themouse
intestinal microbiota. Dysbiosis was evident in the intestinal flora of mice in the IR group. Conclu-
sion: Oral administration of OVS-2 can help re-establish the gut microbiota composition and slow
down the development of RIII in mice, suggesting that OVS-2 can regulate RIII and disturbance of
intestinal flora in mice.
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INTRODUCTION
Radiation-induced intestinal injury (RIII) is a severe
complication of radiotherapy for abdominopelvic and
retroperitoneal tumors, frequently occurring during
the treatment of malignant abdominal and pelvic tu-
mors1–4. Patients often experience symptoms such
as vomiting, weight loss, loss of appetite, diarrhea,
and infection after radiotherapy 5–7. In severe cases,
the injury can lead to death from septic shock 8. The
mechanisms underlying radiation enteritis involve
complex processes, including epithelial cell death,
crypt stem cell damage, mucosal barrier dysfunction,
and inflammation. Traditional interventions, like
bone marrow transplantation, often fail to effectively
resolve these issues9–16.
Traditional Chinese medicine offers an effective treat-
ment for RIII through its radioprotective, antioxidant,
and anti-inflammatory properties17,18. Orychophrag-
mus violaceus, commonly known as the Febru-
ary orchid14, a natural antioxidant herb from the

Brassicaceae family, has been extensively studied
for its medicinal uses19,20, including anti-radiation,
antibacterial, antitumor, and hepatoprotective ef-
fects17–20. The compounds in O. violaceus seeds
mainly include alkaloids, flavonoids, and triterpenoid
saponins, which possess physiological activities such
as anti-free radical, antibacterial, antitumor, and hep-
atoprotective properties21. The intestinal flora, the
largest microecological system in the human body,
plays a crucial role in digestion and pathogen resis-
tance22–25. A disruption of the intestinal flora is a piv-
otal factor in RIII9,26–28. Various studies have shown
that traditional Chinese medicine can treat RIII by
improving the intestinal flora29–31. This study aims to
evaluate the therapeutic effects of OVS-2, an alkaloid
extract from O. violaceus seeds, on RIII. We focus on
its ability to enhance survival and alleviate gastroin-
testinal damage by modulating the gut microbiome,
assessed through 16s rRNA fecal sequencing. This
study aims to assess the impact of OVS-2 on the sur-
vival rates of mice subjected to abdominal radiation
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and analyze the changes in intestinal pathology and
flora composition in response to OVS-2 treatment.

METHODS
Preparation and Chemical Profiling of OVS-
2
The herb, sourced from Shuyang (Anhui Province,
China), was identified as Orychophragmus violaceus
seeds of the genus Orychophragmus within the Cru-
ciferae family. It was verified by Associate Researcher
Li Bin from the Institute of Radiation Medicine,
Academy of Military Medical Sciences. Sample spec-
imens were securely stored in the laboratory.
The seeds were air-dried and extracted three times
with 70% ethanol, each extraction lasting 2 hours.
The concentrated extract was then processed by
D001 cation-exchange resin with impurities removed
through elution with water at a flow rate of 1 column
volume per hour (BV/h). This was followed by elution
with 95% ethanol containing 0.5% ammonia at a flow
rate of 1 bpm. This process yielded the final product,
OVS-2.

Animal Grouping
C57BL/6 mice were procured from SPF Biotechnol-
ogy Co., Ltd. (Beijing, China) and acclimatized under
standardized laboratory conditions for 7 days, with
controlled temperature, humidity, and a 12/12-hour
light/dark cycle. This study adhered to ethical guide-
lines approved by the Experimental Animal Medical
Ethics Committee of the Military Medical Research
Institute and was conducted in accordance with the
principles of the 3Rs (Replacement, Reduction, Re-
finement). Mice were randomly assigned to one of
three groups: a normal control group (CON), an irra-
diation group (IR), and a drug administration group
(OVS-2). Randomization was ensured by using a
computer-generated list. The study involved double-
blinding, where the investigators administering the
treatments and those assessing the outcomes were un-
aware of the group assignments. The weights of the
mice were recorded before the start of the experiment.
A 60Co irradiator from the Beijing Institute of Ra-
diation Medicine was used to deliver a targeted ab-
dominal irradiation dose of 15 Gy at a rate of 74.22
cGy/min, while non-abdominal areas were shielded
with lead blocks. The ethical approval for this pro-
tocol was granted by the Animal Laboratory of the
Experimental Animal Center, Military Medical Re-
search Institute (Ethic number IACUC-DWZX-2023-
P502, Approval date: 29 January 2022). Prior to ir-
radiation, mice were anesthetized with an intraperi-
toneal injection of sodium pentobarbital to minimize

distress. The control group received intragastric ad-
ministration of normal saline, while the IR and OVS-
2 groups received their respective treatments concur-
rently with irradiation. Specifically, the OVS-2 group
was administered 100mg/kg ofOVS-2 orally 24 hours
before irradiation, and subsequently at 0.5, 24, and
48 hours post-irradiation. The IR group received an
equivalent volume of physiological saline following
the same schedule.

Survival andWeight
All groups were monitored for survival and body
weight changes over 30 days following a 15 Gy whole-
abdominal irradiation.

HE Staining
On the 3.5th day post-irradiation, mice were eutha-
nized by cervical dislocation. Small intestinal tissues
were collected, fixed in 4% paraformaldehyde, stained
with hematoxylin and eosin (HE), and sliced. The
structure of the small intestinal mucosa was observed
under a light microscope, and villus height and crypt
depth were measured using ImageJ 3.

Intestinal Flora Sequencing
Genomic DNA was extracted from samples using
an OMEGA DNA Kit (D5625-01) (Omega Bio-Tek,
Norcross, GA, USA). The V3-V4 variable regions
were PCR-amplified using specific primers and high-
fidelity DNA polymerase, and the PCR products were
detected by agarose gel electrophoresis. Target frag-
ments were recorded and quantified using the Quant-
iT PicoGreen dsDNA Assay Kit. The PCR amplifi-
cation products were quantified using a microplate
reader, and the ratio was adjusted according to the
sequencing requirements. Libraries were constructed
using the TruSeq Nano DNA LT library prepara-
tion kit, checked using Agilent Bioanalyzer 2100 and
Promega QuantiFluor, and sequenced after qualifica-
tion.

Statistical Analysis
Statistical analyses were performed using ImageJ and
GraphPad Prism version 9.0.1. Survival analysis
was performed using the Kaplan-Meier (K-M) curve,
and the Log-rank test was used to compare survival
rates between groups. Data are reported as mean ±
standard deviation (SD). Differences between groups
were analyzed using a two-way analysis of variance
(ANOVA) and Tukey’s analysis of variance to com-
pare more than two groups. Alpha diversity refers
to within-group diversity and was analyzed using the
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Tukey test. LEfSe analysis employs Linear Discrim-
inant Analysis (LDA) and considers species with an
LDA score greater than 4 as biomarkers with statisti-
cally significant differences between groups. STAMP
difference analysis utilizes the Wilcoxon Rank-Sum
Test to identify species with significant differences.
Statistical significance was set at P < 0.05.

RESULTS

Therapeutic Effect of OVS-2 on RIII in Mice
C57BL/6Jmicewere irradiatedwith 15Gy 60Coγ-rays
in the abdomen. OVS-2 was administered orally at a
dose of 100 mg/kg 24 hours before irradiation, with
subsequent administrations half an hour before irra-
diation, and 24 and 48 hours post-irradiation, while
maintaining the same dosage as the initial oral admin-
istration, as shown in Figure 1A. Survival analysis us-
ing the Kaplan-Meier method and Log-rank test re-
vealed that 100% of the mice in the OVS-2 group sur-
vived, compared to only 40% in the irradiated group
without treatment (χ2=9.240, P < 0.05) (Figure 1B).
H&E staining of intestinal tissues showed that the
control mice had normal small intestinal villi, while
the irradiated group showed disorganization, struc-
tural damage, and mild inflammation. In contrast,
the OVS-2 treated mice had well-preserved intesti-
nal structures, without significant damage or inflam-
mation. Measurements confirmed that OVS-2 treat-
ment resulted in longer villi and deeper crypts, sug-
gesting that it effectively minimized radiation dam-
age to the intestines (Figure 1C).These results showed
that OVS-2 had strong anti-radiation activity in vivo.

Microbial Diversity Analysis

Alpha and Beta Diversity
Alpha diversity analysis reflects the abundance and
diversity of the intestinal flora. These include the
ACE, Chao 1, Shannon, and Simpson indices. Among
them, the ACE and Chao 1 indices were used to es-
timate community richness, and the Shannon and
Simpson indices were both used to estimate commu-
nity diversity. The larger the two indices, the higher
the community diversity. There was no statistically
significant difference in the ACE and Chao 1 indices
between the control andmedication groups (P > 0.05)
(Figure 2A and B). The Shannon and Simpson in-
dices in the model group were both lower than those
in the control and medication groups (P < 0.05), sug-
gesting that species diversity decreased after irradia-
tion and that OVS-2 increased species diversity post-
irradiation (Figure 2C andD). Principal Coordinates

Analysis (PCoA): PCoAanalyses changes in the struc-
ture of the intestinal microbial community, used to
study the similarity or difference in sample commu-
nity composition. In this analysis, the proximity be-
tween points on the plot indicates more similar mi-
crobial compositions, whereas points that are far-
ther apart represent greater differences. After radia-
tion exposure, the structure of the intestinal bacteria
changed greatly: the IR group was further away from
the other two groups on the PCoA plot. This indi-
cates a significant shift in microbial diversity due to
radiation. In contrast, the distance between the CON
group and the OVS-2 group was relatively close, sug-
gesting that OVS-2 treatment helps maintain a mi-
crobial composition closer to that of the unirradiated
state (Figure 2 E).

Microbial Community Analysis

Phylum to Genus Level Distribution
At the phylum level, Firmicutes, Actinobacteria, and
Proteobacteria dominated all three groups. The CON
and OVS-2 groups exhibited the highest abundance
of Actinobacteria, as shown in Figure 3A. At the
class level, Actinobacteria, Bacteroidia, Bacilli, and
Gammaproteobacteria dominated the three groups.
The IR group had a higher abundance of Bacilli,
whereas the CON and OVS-2 groups displayed a
higher abundance of Actinobacteria. Additionally,
the OVS-2 group exhibited a higher abundance of
Clostridia compared to the other two groups. Vary-
ing degrees of changes were observed, as shown
in Figure 3B. At the level of order classification
of intestinal flora, the three groups are classified
into Lactobacillaceae, Erysipelotrichales, Bifidobacte-
riales, Xanthomonadales, and Alteromonadales (with
Burkholderiales being dominant). The abundance
of Erysipelotrichales in the model group was signif-
icantly lower than that in the other two groups, and
the abundance of Lactobacilli species was significantly
higher than that in the other two groups. There
were varying degrees of change among the species
in each group, as shown in Figure 3C. At the fam-
ily level, intestinal flora was classified into Streptococ-
caceae, Erysipelotrichaceae, Bifidobacteriaceae, Xan-
thomonadaceae, and Shewanellaceae. The abundance
of Erysipelotrichaceae in the model group was signif-
icantly lower than that in the other two groups, and
the abundance of Lactobacillus species was signifi-
cantly higher than that in the other two groups. There
were varying degrees of change among the species in
each group, as shown in Figure 3 D. At the genus
level, the three groups were dominated by Strepto-
coccus, Dubosiella, Allobaculum, Bifidobacterium, and
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Figure 1: Therapeutic effect of OVS-2 on RIII in mice. (A) The experimental protocol involved injecting mice
intraperitoneally with vector (saline) or OVS-2 for four doses with 15 Gy of ABI. Samples of small intestinal tissues
were collected 3.5 days after ABI (n = 10). (B) Survival curve of mice after 15Gy 60Coγ-ray irradiation. (C) Effect of
OVS-2 on intestinal villus length and crypt depth in mice after irradiation (Compared with IR group, * P < 0.05).

Stenotrophomonas species. The abundance of Lacto-
bacillus in the CON group was significantly higher
than that in the other three groups, and there were
varying degrees of changes among the species in each
group, as shown in Figure 3 E.

LEfSe Analysis for Biomarker Discovery
LEfSe analysis identifies factors and biomarkers
with significant differences between categories.
Through LEfSe analysis, we confirmed the presence
of microorganisms with significant differences
between groups (LDA > 4). Among them, bacteria
that were significantly enriched in the CON group
were f_Erysipelotrichaceae, o_Erysipelotrichales,
g_Allobaculum, p_Actinobacteriota,
o_Bifidobacteriales, c_Actinobacteria,
f_Bifidobacteriaceae, g_Bifidobacterium,
g_Dubosiella, and g_Faecalibaculum. The bac-
teria significantly enriched in the IR group

were o_Lactobacillales, f_Streptococcaceae,
g_Streptococcus, g_Lactococcus; f_Pasteurellaceae,
o_Pasteurellales, and g_Rodentibacter. Bacte-
ria significantly enriched in the OVS-2 group
were o_Erysipelotrichales, f_Erysipelotrichaceae,
g_Dubosiella, g_Faecalibaculum, p_Actinobacteriota,
c_Clostridia, c_Actinobacteria, g_Bifidobacterium,
f_Bifidobacteriaceae, and o_Bifidobacteriales
(Figure 4 A and B).

Significance Testing ofMicrobial Abundance
Significant Difference Testing compares the abun-
dance of microbes in different groups using statistical
tests to find any significant differences. This helps us
understand which species are more abundant in one
group compared to another. We analyzed the signif-
icant differences between the groups and found that
the abundance of Streptococcus was higher in the IR
group than that in the CON group. After drug inter-
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Figure 2: Alpha andbeta diversity analysis. (A) ACE (Abundance based Coverage Estimator) index (P = 0.25); (B)
Chao index (P=0.25); (C) Shannon index (P=0.026); (D) Simpson index (P=0.0097); (E) PCoA (Principal Coordinates
Analysis) analysis based on Unweighted Unifrac distance.
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Figure 3: Analysis of species abundance differences in the intestinal flora of mice at the phylum to genus
levels. (A) The top 10 most abundant bacterial groups in each sample at the phylum level. (B) The top 10 most
abundant bacterial groups in each sample at the class level. (C) The top 10 most abundant bacterial groups in
each sample at the order level. (D) The top 10 most abundant bacterial groups in each sample at the family level.
(E) The top 10 most abundant bacterial groups in each sample at the genus level.

vention in the OVS-2 group, the abundance of these
bacteria decreased significantly (P < 0.05), whereas
the abundance of Dubosiella, Bifidobacterium, and
Faecalibaculum in the IR group was low, but there was
significant enrichment in both the CON and OVS-2
groups (P < 0.05) (Figure 4 C andD).

DISCUSSION
Our analysis highlighted no significant differences in
alpha diversity (species richness) between the control
(CON) and irradiated (IR) groups, while species di-
versity was lower in the IR group compared to both
the CON and OVS-2 treated groups. This suggests
that while radiation may not affect the richness of
species, it does impact their distribution and abun-
dance. The beta diversity results further support this,

indicating a distinct separation in the microbial com-
munities of the IR group compared to the CON and
OVS-2 groups, with the latter showing a microbial
composition more similar to the control.
Through Lefse analysis and significant difference test
analysis between groups, we screened out the most
advantageous beneficial bacteria of the OVS-2 group;
beneficial bacteria that were significantly enriched in
the OVS-2 group mainly included Dubosiella, Fae-
calibaculum, Bifidobacterium, Turicibacter, and Rom-
boutsia.
The finding that OVS-2 treatment maintains closer
microbial diversity to the control group aligns with
studies highlighting the role of gut microbiota in ra-
diation resistance. For instance, research has shown
thatmicrobiota diversity is crucial formaintaining gut
homeostasis and resilience against external stressors
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Figure 4: Analysis of inter-group species differences in intestinal flora ofmice in each group. (A and B) LEfSe
(Linear Discriminant Analysis Effect Size) analysis of differential bacterial flora among three groups; (C) Analysis
of intestinal flora species differences between CON group and IR groups, (D) Analysis of intestinal flora species
differences between OVS-2 group and IR group.
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such as radiation. The beneficial bacteria identified,
including Dubosiella, Faecalibaculum, and Bifidobac-
terium, are known for their protective roles in gut
health, which correlates with their observed enrich-
ment in the OVS-2 group. Specifically, Faecalibac-
terium is renowned for its anti-inflammatory proper-
ties and has been shown tomitigate radiation-induced
damage by enhancing mucosal integrity and reducing
inflammation.
The therapeutic benefits of OVS-2 could be partly at-
tributed to its modulation of butyric acid producers
like Faecalibacterium andDubosiella. Butyric acid is a
critical short-chain fatty acid that maintains gut bar-
rier function and regulates inflammatory responses.
Therefore, the preservation of these bacteria could
be crucial in mitigating the epithelial damage typi-
cally caused by radiation32,33. Studies have shown
that Faecalibacterium can reduce radiation-induced
histological damage to the colon epithelium, pre-
vent radiation-induced destruction of the colon ep-
ithelial barrier function, protect crypt epithelial pro-
genitor/stem cell pools, differentiate epithelial tuft
cells from colorectal irradiation, and maintain ex-
posure, contributing to the self-renewal of irradi-
ated colonic epithelium and reducing mucosal ulcer-
ation34,35. Additionally, Bifidobacteria of the phy-
lum Actinobacteria are common probiotics in the hu-
man intestine that play an important role in human
health36–38. Bifidobacteria can acidify the intesti-
nal environment, inhibit the growth of putrefactive
and pathogenic bacteria, produce vitamins and amino
acids to provide essential nutrients to the human
body, stimulate immune responses, and reduce the
occurrence of colon cancer39–43. This functionality
is crucial for preventing the translocation of harmful
pathogens andmaintaining intestinal homeostasis. In
a study on the treatment of patients with Crohn’s dis-
ease (CD), Lindfors et al. found that bifidobacteria
can upregulate the expression of ZO-1 and repair tight
junctions between colonic epithelial cells44, suggest-
ing that OVS-2 may protect the intestinal mucosal
mechanical barrier through bifidobacteria.
Additionally, the Turicibacter bacterial group plays an
important role in regulating host bile acid and lipid
metabolism. Turicibacter strains alter host bile acid
profiles, thereby reducing serum cholesterol, triglyc-
eride levels, and adipose tissue mass. Colonizing
strains of a single Turicibacter species induce changes
in the host bile acid profile that are often consistent
with those produced in vitro. Furthermore, coloniz-
ing mice with another bacterium that exogenously
expresses a bile-modifying gene from a Turicibac-
ter strain reduced serum cholesterol and triglyceride

levels and the adipose tissue mass. These studies
demonstrated that Turicibacter strains are capable of
altering host bile acid and lipid metabolism genes
and positioned Turicibacter bacteria as modulators of
host lipid biology 45,46. Romboutsia is often associ-
ated with the patient’s health status47,48, and the dra-
matic decrease in Romboutsia abundance (-86.51%)
in polyp-associated mucosa may represent a poten-
tial microbial indicator of the disease condition, i.e.,
Romboutsia may play a key role in health status and
is a potential biomarker of intestinal dysbiosis49.
These results lay the groundwork for future explo-
rations into the mechanisms by which OVS-2 mod-
ulates gut microbiota to confer radiation protection.
Multi-omics approaches could provide deeper in-
sights into the systemic effects of OVS-2, potentially
uncovering novel therapeutic targets for managing
radiation-induced intestinal injury (RIII). Continued
research could also explore the scalability of OVS-2
treatment in clinical settings, assessing its efficacy and
safety in larger populations.
Overall, our study not only confirms the protective
effects of OVS-2 against radiation-induced intestinal
damage but also provides a compelling argument for
the therapeutic modulation of the gut microbiome as
a viable strategy for enhancing radiation tolerance.
Further investigations into the specific interactions
between OVS-2 and intestinal flora will be crucial in
developing refined interventions aimed at mitigating
radiation’s deleterious effects.

CONCLUSIONS
Our study confirms thatOVS-2 enhances survival and
reduces weight loss in mice after radiation, maintain-
ing the integrity of intestinal structures and rebalanc-
ing gut flora. These results highlight OVS-2’s effec-
tiveness in both protecting the intestines and modu-
lating the microbiome, making it a promising treat-
ment for radiation-induced intestinal injury (RIII).
This supports OVS-2’s potential to improve treatment
strategies for radiation damage, with further research
needed to fully understand its benefits and mecha-
nisms.

ABBREVIATIONS
16S rRNA - 16S ribosomal RNA, ACE - Abundance-
based Coverage Estimator, ANOVA - Analysis of
Variance, bpm - Beats per minute, BV/h - Bed Vol-
ume per hour, C57BL/6 - Mouse strain used in the
study, CON - Control group, DNA - Deoxyribonu-
cleic Acid, dsDNA - Double-stranded DNA, HE -
Hematoxylin and Eosin, IACUC - Institutional An-
imal Care and Use Committee, IR - Irradiation, K-M
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- Kaplan-Meier, LDA - Linear Discriminant Analysis,
LEfSe - Linear Discriminant Analysis Effect Size,OV
- Orchophragmus violaceus, OVS-2 - Orychophrag-
mus violaceus extract, PCR - Polymerase Chain Re-
action, PCoA - Principal Coordinates Analysis, RIII
- Radiation-Induced Intestinal Injury, SD - Standard
Deviation, SPF - Specific Pathogen Free
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