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ABSTRACT
Background: Prostate cancer is a leading cause of morbidity and mortality among men. Overex-
pression of Bcl-2 proteins is linked to prostate cancer progression, suggesting that targeting Bcl-2
could enhance therapeutic efficacy. Therefore, Bcl-2 inhibition may potentiate anti-tumor activ-
ity in prostate cancer. Methods: We designed a novel antisense oligonucleotide (ASO) derived
from G3139 and evaluated its anti-proliferative effects in LNCaP and PC3 prostate cancer cell lines.
The apoptotic effects of docetaxel (DTX) and the ASO, administered alone or in combination, were
assessed by real-time PCR and Annexin V-FITC/PI flow cytometry. We hypothesized that the com-
bination therapy would be more effective than either agent alone. Results: The ASO significantly
down-regulated Bcl-2 mRNA and inhibited proliferation in both cell lines, as shown by real-time
PCR. Flow cytometry revealed an increase in early apoptotic cells in all treated groups. Co-treatment
with the ASO and DTX produced the highest apoptotic rates (75–85 %). Conclusions: The novel
ASO effectively reduces Bcl-2 expression and sensitizes prostate cancer cells to docetaxel, permit-
ting lowerDTXdoses. The combination therapy induced 75–85%apoptosis in LNCaP and PC3 cells,
suggesting an improved strategy that may limit high-dose DTX–associated resistance and toxicity.
Key words: Bcl-2, G3139, Antisense oligonucleotide (ASO), Docetaxel (DTX), Prostate cancer

INTRODUCTION
Prostate cancer is the second most common cancer
and the fifth leading cause of cancer-related death in
men. The incidence and mortality rates of prostate
cancer are strongly related to age, with the high-
est rates observed in men over 65 years. Other
risk factors include ethnicity, genetics, and family
history1–4. The progression and development of
prostate cancer is largely related to the number of
genetic abnormalities that affect not only the an-
drogen receptor but also the regulation of apop-
totic pathways5. Prostate cancer growth is initially
androgen-dependent, but later becomes androgen-
independent and is accompanied by increased ex-
pression of anti-apoptotic genes, leading to metas-
tasis and higher mortality. Studies show that al-
tered expression of apoptosis-regulating proteins
contributes to therapy-resistant prostate cancer. In
addition, defects in apoptotic pathways promote
cancer-cell survival and resistance to chemotherapy
drugs6–9.
The BCL-2 family plays an essential role in the reg-
ulation of cellular apoptosis. BCL-2 is a key anti-

apoptotic gene in this pathway10. The BCL-2 pro-
tein is anti-apoptotic, and its expression is directly
related to the progression of many cancers. Over-
expression of this gene is associated with resistance
to several therapeutic stimuli, including androgen
deprivation, chemotherapy, and radiotherapy11–14.
Overexpression of the BCL-2 protein, common in
malignant cells, promotes survival and drug resis-
tance but also presents opportunities for targeted
therapies that selectively eliminate these cells15.
Thus, combining BCL-2 inhibition with other treat-
ments may enhance cancer-cell killing and limit
drug resistance and metastasis.
A common way to treat prostate cancer is
chemotherapy; docetaxel (DTX) is often referred to
as the first-line treatment. It stabilizes microtubules,
thereby inducing cancer-cell death16,17. Another
approach involves antisense oligonucleotides
(ASOs), used alone or in combination with other
agents. ASOs are chemically modified single-
stranded oligodeoxynucleotides of 18–21 nt. These
ASOs hybridize to their specific mRNAs, and the
RNase H complex subsequently degrades the duplex.
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In other words, such ASOs can prevent translation
of the target gene by binding to the mRNA18–20.
Oblimersen (G-3139; Genasense; Genta Inc.) is an
ASO that inhibits translation of BCL-221.
The use of antisense oligonucleotides targeting BCL-
2 in combination with docetaxel reduced the IC50
of DTX compared with DTX alone. This reduc-
tion helps minimize toxicity to normal cells22. Fur-
thermore, the combination therapy sensitized can-
cer cells to DTX and decreased their drug resis-
tance22,23. As high doses of chemotherapy agents
typically induce resistance in cancer cells, diminish-
ing the dose can be a strategy to overcome drug re-
sistance effectively22.
We designed a novel antisense oligonucleotide,
based on the Ensembl BCL-2 mRNA sequence and
the G3139 antisense oligonucleotide, to investigate
its apoptotic effects on LNCaP and PC3 prostate-
cancer cell lines, alone and in combination with do-
cetaxel. We assessed apoptosis by real-time RT-PCR
and flow cytometry, using Lipofectamine for deliv-
ery of docetaxel and the novel ASO. We hypothe-
sized that targeting BCL-2 with ASO would enhance
docetaxel-induced apoptosis by reducing the IC50 of
DTX.
Studies have shown that combining low-dose doc-
etaxel with chemosensitizers can induce effective cy-
totoxicity in prostate-cancer cells while sparing nor-
mal prostate epithelial cells24. Clinically, reduced-
dose docetaxel regimens have also demonstrated
comparable efficacy with significantly decreased
systemic toxicity25. In a rat study, histological ex-
amination of vital organs, including the prostate,
two weeks after ASO treatment revealed no toxic-
ity26.

METHODS
In this study, we designed a novel 22-mer antisense
oligonucleotide (ASO) based on the Ensembl BCL-2
mRNA sequence and the previously reported 18-mer
ASO G3139. We then evaluated and compared the
pro-apoptotic effects of docetaxel (DTX) and the new
ASO in LNCaP and PC3 prostate cancer cell lines us-
ing real-time PCR and flow cytometry.

Cell Culture
Prostate cancer cell lines LNCaP and PC3 were pur-
chased from the Pasteur Institute (Tehran, Iran).
Cells were cultured in RPMI-1640 supplemented
with 10 % FBS and maintained at 37 ◦C in 5 % CO2.
Cells were passaged at ~95 % confluence; medium
was renewed every doubling time. The doubling
times for LNCaP and PC3 were 72 h and 48 h, re-
spectively.

Docetaxel (DTX) Preparation
Docetaxel (DTX) was obtained from Actover, dis-
solved in DMSO to 4 mg mL-1 (10 mg in 2.5
mL) according to the manufacturer’s instructions,
aliquoted, and stored at −20 ◦C.

Antisense Oligonucleotide Design and
Preparation
G3139 (oblimersen sodium, Genasense) is an 18-
mer antisense oligonucleotides (5′–TCT CCC AGC
GTG CGC CAT–3′) complementary to codons 1–
6 of the Bcl-2 mRNA27. Novel antisense oligonu-
cleotides (ASO) designed according to the published
nucleotide sequence of the bcl-2 mRNA in the En-
semble database (https://asia.ensembl.org/Homo_sa
piens) and based on the antisense oligonucleotide
G3139.
The secondary structure of the bcl-2 mRNA pred-
icated by minimum free energy (MFE) approach
(http://rna.tbi.univie.ac.at//cgibin/RNAWebSuit
e/RNAfold.cgi). The sequence of ASO was 5′-
GTTCTCCCAGCGTGCGCCATCC-3′. To enhance
the stability of the antisense oligonucleotide at the
target site within cells, we designed it with phos-
phorothioate modifications at both ends. It has 22
nucleotides, all 22 nucleotides have phosphorthioate
modification but the first six nucleotides and the
last six nucleotides also have 2’-O-(2-methoxyethyl)
modification. It Purchased from Gorgon Gene
Inhibition Biotechnology Company (Iran) (Table 1).
The secondary structure of the bcl-2 mRNA ad-
dress on minimum free energy (MFE) access
with (http://rna.tbi.univie.ac.at//cgibin/RNAWebSui
te/RNAfold.cgi) can exhibit in Figure 1.

Binding Analysis
The binding energies of the novel ASO and G3139
were compared in silico. A more negative ∆G in-
dicates higher duplex stability. G3139 displayed a
∆G of −27.53 kcal mol-1 (Figure 2 B), whereas the
novel ASO reached −36.77 kcal mol-1 (Figure 2 A),
suggesting ~9 kcal mol-1 stronger binding to BCL-2
mRNA.

Primer Design for Real-Time PCR
Real-time PCR primers were designed with Primer3
and Oligo 7 from the RefSeq sequences of GAPDH
and BCL-2 (https://ncbi.nlm.nih.gov/RefSeq).
GAPDH: forward 5′-CCT GCC GTC TAG AAA
AAC CTG CCA-3′, reverse 5′-CAG CGT CAA AGG
TGG AGG AGT GGG-3′ (156 bp). BCL-2: forward
5′-GAC GAC TTC TCC CGC CGC TAC-3′, reverse
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Table 1: Bcl-2 antisense oligonucleotide specifications

Sequence: 5’- *G2 -*T2-*T2-*C2-*T2-*C2-*C-*C-*A-*G-*C-
*G-*T-*G-*C-*G-*C2-*C2-*A2-*T2-*C2-*C2

-3’

Concentration: 100 µM Synthesis scale: 0.20 µmol

GC%:68.2 MW: 6977 g/mol

Delivered: 349 µg-50.1 nmol Synthesised: 10.5 OD

Quality Control:
MALDI-TOF

Purification: HPLC

*: phosphorothioate and 2: 2’-O-(2-methoxyethyl) is the modification of
nucleotides

Figure 1: Prediction of secondary structure of mRNA bcl-2 based on MFE.

Table 2: Transfection and treatment of two cell lines with Antisense Oligonucleotide design and DTX

Cell lines Control
(48 and 72h)

Docetaxel (DTX)
(48 and 72h)

New designed ASO
(48 and 72h)

Docetaxel (DTX) and new ASO
encapsulated with lipofectamine

(48 and 72h)

LNCaP * * * *

PC3 * * * *

5′-TCC CCC AGT TCA CCC CGT CC-3′ (133 bp).
Primer-BLAST confirmed specificity (Figure 3).

Transfection of Cells

LNCaP and PC3 cells at passage 6 were transfected
with the ASO using Lipofectamine 2000 (Invitro-
gen) at a 1:1 (v/v) ratio (50 µL each) in serum- and
antibiotic-free medium (Table 2 ). Final ASO con-
centrations were 125, 250, 500, and 1000 nM to deter-
mine the IC50 for BCL-2 knock-down. After 30 min
complex formation, the mixture was added to the
cells and incubated for 48 h or 72 h in triplicate. The
final Lipofectamine concentration was 25 µL mL-1.

Despite the absence of a fluorescent label, significant
BCL-2 down-regulation confirmed efficient delivery.

RNA Isolation and cDNA Synthesis

Total RNA was isolated 48 h and 72 h post-
transfection using TRIzol (Invitrogen) followed by
DNase I treatment (Yekta Tajhiz, Iran). Quantity
and purity were assessed spectrophotometrically
(A20/20) and by agarose-gel electrophoresis, then
verified with the BIOFACT RP101-050 kit. First-
strand cDNA was synthesized with the YTA cDNA
synthesis kit (Yekta Tajhiz).
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Figure 2: The bioinformatic approach was employed using [ http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RN
Aup.cgi ] to predict ∆G of hybridization between the designed ASO and the target mRNA (A). Also between G3139
and target mRNA (B).

Analysis of BCL-2 mRNA Expression
Real-time PCR reactions (12 µL) contained 1–2 µL
cDNA, 0.5 µL each primer (5 pmol), 5 µL RealQ
Plus SYBR Green master mix (Amplicon, Denmark),
and 4–5 µL nuclease-free water. Cycling conditions
were 95 ◦C/10 min; 45 cycles of 95 ◦C/30 s, 60 ◦C/30
s, 72 ◦C/30 s on an ABI StepOne system. Amplifica-
tion efficiency (E = 10(−1/slope)) was calculated from
standard curves (Figure 4). Relative expression was
determined by ∆∆Ct using GAPDH as the reference.

Evaluation ofCell Cytotoxicity byMTTAs-
say
LNCaP and PC3 cells (5 × 103 cells/200 µL) were
seeded in 96-well plates. DTX cytotoxicity was mea-
sured by MTT assay after 48 h and 72 h. Concen-
tration ranges were 2–400 nM (LNCaP) and 10–800
nM (PC3). IC50 values guided combination studies
in which cells were first transfected with 125 or 250
nM ASO for 5 h, then treated with DTX at or below
the IC50. Absorbance at 570 nm was recorded. All
experiments were performed in triplicate.

Determination of Apoptosis by Flow Cy-
tometry
Apoptosis was quantified with the Annexin V-
FITC/PI Kit (MabTag, Germany) according to the

manufacturer’s protocol. Cells were harvested af-
ter treatments defined by the MTT and qRT-PCR re-
sults, stained, and analyzed on a BD FACSArraywith
FlowJo software. Each condition was tested in trip-
licate.

Statistical Analysis

Data are presented as mean ± SEM (n = 3). One-
way ANOVA followed by Student’s t-test was used
to assess significance. Graphs were generated with
GraphPad Prism 8. PCR data were analyzed with
LinRegPCR 11.0 and REST. Drug-interaction syn-
ergywas calculated by the Bliss independencemodel
(Table 3).

RESULTS

Real-Time RT-PCR

To evaluate the effect of the newly designed ASO on
BCL-2 expression in two prostate-cancer cell lines,
we performed real-time RT-PCR as described in the
Transfection section. BCL-2 mRNA levels were nor-
malized to the housekeeping gene GAPDH. Down-
regulation of BCL-2 was observed at both 48 h and
72 hwith ASO concentrations of 250 nM and 125 nM,
respectively (Figure 5).
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Figure 3: Result of primer blast for A) bcl-2 primers, and B) GAPDH primers in NCBI. bcl-2 primers can produce
7 variants of bcl-2 mRNA and GAPDH primers can produce 4 variants which means they designed for conserved
regions of bcl-2 mRNA and GAPDH mRNA.
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Figure 4: Result of primer efficacy based on standard curves adapted from PCR. A) bcl-2 primers. B)
GAPDH primers. C) result of PCR efficacy based on E=10(−1/slope) method for GAPDH. D) result of PCR efficacy
based on E=10(−1/slope) method for bcl2.

MTT Assay
Cell viability decreased in a time- and dose-
dependent manner. In the DTX-only group, after 48
h and 72 h, the IC50 values were 135 nM and 63 nM
for LNCaP cells and 89 nM and 57 nM for PC3 cells
(Figure 6A–D). In the ASO-only group, the IC50 val-
ues for LNCaP cells were 273 nM (48 h) and 189 nM
(72 h), whereas for PC3 cells they were 309 nM (48 h)
and 188 nM (72 h) (Figure 6E,F). In the ASO + DTX
group, the IC50 values for LNCaP cells were 75 nM
(48 h) and 32 nM (72 h) (Figure 6G,H); for PC3 cells
they were 48 nM (48 h) and 32 nM (72 h) (Figure 6
I,J).
In PC3 cell line in 48 h in the control group, bcl-2 rel-
ative to the GAPDH was normal (100%). Neverthe-
less, in cells that had taken 125 nM, the expression
of the bcl-2 in relation to the GAPDH was almost

70%. In cells which had 500 nM ASO, the expression
of bcl-2 mRNA in ratio of GAPDH was approx 49%.
The cells that had taken 500 nM, the expression of
the bcl-2 in relation to the GAPDH was almost 36%.
In cells that had taken 1000 nM ASO, the expression
of bcl-2 was 21%.

Apoptosis
In LNCaP cells after 48 h, cell viability was 93 % in
the control, 76 % with DTX alone, 74 % with ASO
alone, and 16 % with the combination (Figure 7 A–
D). In PC3 cells, viability was 91 % in the control, 49 %
with DTX, 34 % with ASO, and 13 % with the combi-
nation (Figure 7 E–H). The combination exhibited a
synergistic effect: the observed fractional inhibition
(75 %) exceeded the Bliss-independence value (39 %)
(Table 3). In PC3 cells, the combination lowered the
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Figure 5: The result of fold change of real time PCR. In this method ∆∆CT was applied. A and B was
related to LNCaP cell lines. C and D was related to PC3.

DTX IC50 and achieved 85 % apoptosis, confirming
synergism.

DISCUSSION
Prostate cancer is the second most common cancer
in men. There are many risk factors for prostate can-
cer, including age, ethnicity, genetics and family his-
tory. Studies show that genetic abnormalities affect
not only the androgen receptor but also the regula-
tion of apoptosis1–5. Prostate cancer can increase
the expression of anti-apoptotic genes; it can be im-
mortal as long as the patient lives28. Peer-reviewed
studies have reported that defects in apoptotic path-
ways can cause cancer-cell survival and resistance to
chemotherapeutic agents29. BCL-2 plays an essen-
tial role in apoptosis30. Overexpression of this gene
is associated with resistance to several anticancer
therapies31.
It seems that apoptosis induction by chemothera-
peutic agents is more effective when combined with
BCL-2 silencing. BCL-2 silencing can occur at the
mRNA level. Following reduction of BCL-2 expres-
sion, cells become vulnerable to therapeutic agents.
One method to down-regulate gene expression is
antisense or gene-therapy technology. In this ap-
proach, single-stranded oligonucleotides (18-21 mer)

are designed to hybridize specifically to their region
in the mRNA. Next, an RNase H complex cleaves
this hybrid. A critical issue in oligo-antisense-
based therapy is maintaining oligonucleotide stabil-
ity in cells at the target site. To address this, re-
searchers have introduced chemical modifications to
the oligonucleotide backbone, such as replacement
of a phosphate bond with phosphorothioate, base
modifications, sulfur substitutions, terminal modifi-
cations and 2′-O-methyl changes in the ribose sugar.
Another important problem in antisense oligonu-
cleotide therapy is delivery of the oligonucleotide to
the target site32–36.
In this study, to improve stability at the target site,
we designed an antisense oligonucleotide contain-
ing phosphorothioate at both termini. To address
the delivery issue, we used Lipofectamine to carry
the newly designed ASO into cells, optimizing cellu-
lar uptake and endosomal escape to facilitate mem-
brane crossing. We then investigated the effects of
docetaxel and this new antisense oligonucleotide on
apoptosis in LNCaP and PC-3 prostate-tumour cell
lines. We designed an experiment to evaluate the ef-
ficiency of the new ASO in sensitizing cells and in-
ducing apoptosis by down-regulating BCL-2 expres-
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Table 3: Result of calculating synergistic effect of combination two drugs in LNCaP cell line and in PC3 cell
line using bliss independence model

Cell line ASO (%) DTX (%) Observed
combination (%)

Bliss
expected

(%)

Effect

LNCaP 23.80 21.26 75.30 40.00 Synergy

22.25 20.10 72.50 37.88 Synergy

25.20 22.39 78.20 41.95 Synergy

Mean ASO Mean DTX Mean Observed
combination

23.75 21.25 75.33

SD ASO SD DTX SD Observed
combination

1.48 1.15 2.85

PC3 ASO (%) DTX (%) Observed
combination (%)

Bliss
expected

(%)

Effect

64.20 42.00 84.90 79.24 Synergy

61.45 40.25 81.50 76.97 Additive

66.95 43.75 88.30 81.41 Synergy

Mean ASO Mean DTX Mean Observed
combination

64.20 42.00 84.90

SD ASO SD DTX SD Observed
combination

2.75 1.75 3.4

EBliss = ASO + DTX – (ASO × DTX / 100)
ASO: The percentage of apoptotic cells treated with ASO
DTX: The percentage of apoptotic cells treated with DTX
The percentage of apoptosis rate defined as the total of Q2 + Q3

sion. Two prostate cancer cell lines, LNCaP and PC-
3, were used. Four groups of cells were prepared for
each line. The first group served as control. Do-
cetaxel was added to the second group. The new
ASO was added to the third group. The combina-
tion of ASO and docetaxel was added to the fourth
group. Real-time PCR was used to assess BCL-2 ex-
pression relative to the housekeeping gene GAPDH.
Four ASO concentrations were tested for 48 h and
72 h. We selected the 48 h results because after 72
h flow-cytometry analysis showed necrosis in both
lines. BCL-2 expression relative to GAPDH in con-
trol cells was set to 100 %. After 48 h, BCL-2 ex-
pression decreased by ~50 % compared with the con-
trol group in both LNCaP and PC-3 lines at 250 nM.
Flow cytometry was used to evaluate apoptosis un-
der three conditions: docetaxel alone, ASO alone and

the combination, all compared with control. After
48 h, 93 % of control LNCaP cells and 91 % of control
PC-3 cells were alive. In groups treated with doc-
etaxel alone, 76 % of LNCaP cells and 49 % of PC-3
cells were alive. In groups transfected with the ASO
alone, 74 % of LNCaP cells and 34 % of PC-3 cells
were alive. Ultimately, in the combination group, 16
% of LNCaP cells and about 13 % of PC-3 cells were
alive33.
Importantly, ASO off-target effects require careful
consideration. A systematic approach is crucial,
starting with comprehensive in-silico analysis. This
should include advanced BLAST searches consider-
ing near-cognate sequences, mismatches and wob-
ble base-pairing to predict all potential unintended
binding sites across the transcriptome. Empirical
validation is then necessary. Statistical rigour is es-
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sential to avoid false positives. ASO design must be
optimized to minimize off-target effects while main-
taining efficacy. Strategies include introducing mis-
matches at unintended binding sites, using chemi-
cally modified ASOs for improved specificity or em-
ploying delivery methods that enhance tissue tar-
geting and reduce systemic exposure. An iterative
design–test–refine process is crucial for developing
a specific and safe ASO.
This study also investigates a synergistic drug-
combination strategy to enhance therapeutic effec-
tiveness, reduce dosage and side-effects, and im-
prove patient tolerability compared with monother-
apy by accelerating cellular drug entry. In both
LNCaP and PC-3 cell lines, a synergistic effect was
observed. These findings offer potential for clini-
cal trials designed to overcome DTX resistance. We
recognise that our findings, while promising in es-
tablished cell lines and through in-silico modelling,
represent only a preliminary step. The absence of in-
vivo validation limits our ability to translate these
results directly to the clinic. Future studies are es-
sential to confirm these observations in more physi-
ologically relevant contexts. Specifically, in-vivo ex-
periments using animal models that mimic the hu-
man disease are needed to assess efficacy and safety.
Investigations using primary cells isolated directly
from patients would provide a more accurate rep-
resentation of disease biology and address potential
limitations arising from genetic drift and adaptation
of long-term cell lines. These efforts will be crucial
for validating our hypotheses and paving theway for
potential clinical applications.
Relying on the literature, BCL-2 up-regulation has
been invariably implicated in docetaxel resistance
across both castration-resistant (e.g. PC-3) and
androgen-sensitive models (e.g. LNCaP). For in-
stance, PC-3 sub-lines resistant to docetaxel ex-
hibit elevated BCL-2/BCL-xL levels, while in LNCaP
derivatives, androgen-deprivation-induced AR acti-
vation correlates with increased BCL-2 expression.
Our observation that combining ASOwith docetaxel
in LNCaP cells lowers the IC50 suggests that ASO
may down-regulate this AR/BCL-2-mediated resis-
tance axis, providing a rationale for extending this
combination even to androgen-sensitive prostate-
cancer models.

CONCLUSIONS
Generally, it can be concluded that in most steps
of investigation and research work, the newly de-
signed ASO can reduce expression of the BCL-2
gene. The newly designed ASO alone was able to

reduce BCL-2 expression significantly. Flow cytom-
etry showed that docetaxel (DTX) induced about 30-
40 % of cells to enter the early stage of apopto-
sis, while the newly designed ASO induced approxi-
mately 30-60 %. When the combination of the newly
designed ASO and docetaxel (DTX) was used, it in-
duced 80-90 % of cells to enter early apoptosis. This
makes it reasonable to conclude that by reducing ex-
pression of the BCL-2 gene, cancer cells may bemore
likely to undergo apoptosis sooner. A more defini-
tive conclusion may be obtained with further stud-
ies.
However, in-vivo validation and primary patient-
derived cells were not included in the current study.
This constraint was primarily due to limited access to
clinical samples, ethical considerations, and resource
limitations. We used certified human prostate-
cancer cell lines LNCaP and PC3 from a reliable
biobank; these models are widely accepted for basic
studies. We acknowledge this translational limita-
tion and aim to address our findings in future in-vivo
studies.
Although this study confirmed BCL-2 mRNA down-
regulation, potential interactions with other BCL-2
family members such as BCL-xL or MCL-1 were not
assessed. This will be examined by RNA-seq or qRT-
PCR in future work for further validation.
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