Anemia in children: A review

Siti Nur Nabeela A'ifah Mohammad¹, Salfarina Iberahim^{1,2}, Wan Suriana Wan Ab Rahman^{2,3}, Mohd Nazri Hassan^{1,2}, Hisham Atan Edinur⁴, Maryam Azlan⁴, Zefarina Zulkafli^{1,2,*}

ABSTRACT

Anemia represents a significant global health challenge, particularly among children. It arises from multiple causes. The impact of anemia is substantial, leading to fatigue and weakness, which can restrict physical activity. In children, it can also impair cognitive development, affecting learning ability and concentration. This underscores its profound influence on overall quality of life and developmental outcomes. Effective control of anemia demands a comprehensive approach. Early detection and timely intervention are critical to mitigating the long-term consequences of anemia on individuals and communities. Reducing anemia, especially in children, is cost-effective and yields substantial health benefits. Therefore, to achieve prevention, it is important to raise awareness in the community about anemia and its complications, because mild or moderate anemia, if unrecognized and untreated, can progress to severe and life-threatening stages. Accordingly, this review offers a comprehensive overview of anemia, encompassing inherited and acquired causes. It includes prevalence rates, regional studies, and detailed tables. Finally, the integration of scientific references and study findings confers validity, rendering it a supported and informative review.

Key words: Anemia, children, hemoglobin, inherited, acquired

¹School of Medical Sciences, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

- ²Hospital Pakar Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- ³School of Dental Sciences, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- ⁴School of Health Sciences, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Correspondence

Zefarina Zulkafli, School of Medical Sciences & Hospital Pakar Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Email: zefarinazulkafli@gmail.com

History

- Received: 18/12/2024
- Accepted: 20/08/2025
- Published Online: 31/10/2025

DOI: https://doi.org/10.15419/wnsrrk33

Copyright

© Biomedpress. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

INTRODUCTION

Anemia remains a major public health problem. Approximately 1.62 billion individuals worldwide are affected, with a particularly high prevalence among children 1 . According to the World Health Organization (WHO), anemia in adults is defined as a hemoglobin (Hb) concentration of <12 g/dL in women and <13 g/dL in men. In children, the WHO Hb cut-off values vary by age, as summarized in Table 1. The prevalence of anemia in children in Colombo-PR is 34.7 $\%^2$. In Brazil, the prevalence of mild anemia in children (25 %) is higher than that of moderate anemia (9.9 %) 3 . The etiology of pediatric anemia is heterogeneous; most affected children are asymptomatic, and the condition is often detected during routine health screening.

METHODS

This review was conducted to provide a comprehensive overview of anemia in children, focusing on its prevalence, causes, diagnosis, and management. A structured literature search was performed across the following electronic databases: PubMed, Scopus, and Google Scholar, covering the period from 1993 to 2023. The search terms used included combinations of the following keywords: "anemia", "pediatric anemia", "children", "iron deficiency anemia", "nutritional anemia", "hemoglobin", and "pediatric

hematology", using Boolean operators (AND, OR) to refine the search.

Inclusion criteria were peer-reviewed original research articles, reviews, and clinical guidelines written in English that addressed the epidemiology, etiology, diagnosis, treatment, or prevention of anemia. Exclusion criteria included non-English articles and studies focusing exclusively on adults or on other hematologic disorders not primarily related to anemia. The findings from the selected literature were synthesized thematically, focusing on major areas such as prevalence, etiology, clinical presentation, treatment, and preventive strategies.

Inherited anemia

Hereditary disorders of red blood cells (RBCs) arise from mutations or deletions in specific genes and can result in accelerated RBC destruction and anemia due to decreased hemoglobin (Hb) levels. These inherited RBC disorders include defects in hemoglobin (hemoglobinopathies), the RBC membrane (membranopathies), and RBC enzymes (enzymopathies)⁴.

Hemoglobinopathy

Hemoglobinopathies constitute one of the most prevalent genetic disorders among children worldwide. They are broadly classified into two groups:

Cite this article: Siti Nur Nabeela A'ifah Mohammad, Salfarina Iberahim, Wan Suriana Wan Ab Rahman, Mohd Nazri Hassan, Hisham Atan Edinur, Maryam Azlan, Zefarina Zulkafli. Anemia in children: A review. *Biomed. Res. Ther.* 2025; 12(10):7837-7845.

Table 1: Hemoglobin level based on severity of anemia in children

		Anemia (g/dL)				
Age of children	Normal	Mild	Moderate	Severe		
5 years of age and below	11.0	10.0-10.9	7.0-9.90	< 7		
5-11 years	11.5	11.0-11.4	8.0-10.9	< 8.0		
12-14 years	12.0	11.0-11.9	8.0-10.9	< 8.0		
15 years of age and above	>12.0	10.0-10.9	7.0-9.9	> 7.0		

thalassemias and structural hemoglobin (Hb) variants (abnormal hemoglobins)⁵.

Thalassemias are subdivided into β-thalassemia and α-thalassemia, whereas common Hb variants include HbS, HbE, and HbC6,7. Thalassemia affects both sexes and is particularly prevalent in the Mediterranean basin, Africa, the Middle East, the Indian sub-continent, and South-East Asia. Approximately 80 million individuals are carriers and 300 000-400 000 children are born annually with severe phenotypes. Recent investigations have concentrated on the prevalence, molecular genetics, and clinical consequences of α - and β -thalassemia 8 - 9 . For example, neonatal screening of 1438 infants in Hainan Province, China (2020-2021), identified 1024 thalassemia carriers, most of whom had α-thalassemia; comparable prevalence figures have been reported from Thailand and Malaysia 10, 11, 12, 13, 14. In South-East Asia, HbE/βthalassemia represents a frequent and clinically important phenotype that often necessitates regular transfusion therapy. Owing to increasing migration and inter-marriage, its prevalence is expanding worldwide 15, 16, 17. Public-health interventions including prenatal and premarital screening, population education, and genetic counsellinghave demonstrated efficacy in I owering disease burden 17.

Structural Hb variants arise from mutations, deletions, substitutions, stop-codon read-through (antitermination), or aberrant post-translational modifications of the globin chain ¹⁸. As for thalassemia, the prevalence of Hb variants is augmented by consanguineous marriage and population migration. The most prevalent variants are HbE, HbC, and HbS ¹⁹, ²⁰, ²¹, ²², ²³.

HbE results from a single-nucleotide substitution that replaces glutamic acid with lysine at codon 26 of the β -globin gene ¹⁹. A majority of affected children in Malaysia harbour this variant ²⁴, ²⁵, ²⁶. In one cohort, 2 of 29 paediatric patients with HbE/ β -thalassemia developed thromboembolic events ²⁷,

which may be attributable to genetic predisposition, haemostatic abnormalities, or hepatic dysfunction ²⁸.

HbC arises from the substitution of glutamic acid by lysine at codon 6 of the β-globin chain²⁰. It is highly prevalent in West Africa, particularly in Ghana²⁰. Most heterozygous carriers remain asymptomatic; however, homozygotes may present with mild anaemia, jaundice, or splenomegaly 21. HbS, the hallmark of sickle cell disease, is produced by the replacement of glutamic acid with valine at codon 6 of the β-globin chain²². This aminoacid change reduces the molecule's anionic charge and solubility under de-oxygenated conditions, promoting HbS polymerisation, erythrocyte sickling, chronic haemolysis, and recurrent vaso-occlusive crises 23. In 2010 an estimated 305 000 infants were born with sickle cell disease worldwide, and the majority of related childhood deaths occurred in lowand middle-income countries 29.

In Sudan, HbAS and HbSS were reported in 11.3 % and 3.5 %, respectively, of children aged 0-18 years 30. HbSS prevalence is particularly high in Africa, contributing substantially to childhood morbidity and mortality. Carrier frequencies (HbAS) often exceed 20 %, whereas the prevalence of affected individuals (HbSS) is at least 2 % 31. Among 102 Nigerian children aged 7 months-17 years, 97.1 % had HbSS, whereas 2.9 % had HbSC. In Cameroon, screening of 703 infants revealed HbSS in 0.7 %, HbS/ β +-thalassemia in 0.6 %, and HbAS in 16.8 % 32 . Comparable figures have been documented in the Congo, where 1.4 % of 204 neonates carried HbSS and 16.9 % carried HbAS 33, 34. These data from Sudan, Nigeria, Cameroon, and the Congo underline the urgency of implementing universal newborn screening and early-intervention programmes to mitigate sickle cell-related morbidity and mortal-

Membranopathy

Hereditary spherocytosis (HS) is an inherited membranopathy caused by defects in red blood cell mem-

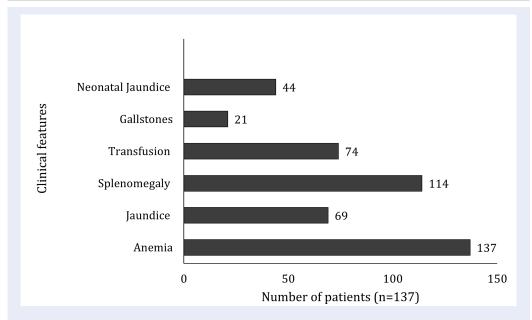
brane proteins, which can lead to hemolytic anemia. HS is characterized by abnormally spherical red blood cells (spherocytes) that are more fragile than normal disc-shaped erythrocytes and therefore have a shortened lifespan. In children, HS can be detected by the presence of spherocytes on a peripheral blood smear ³⁵. There is an association between HS and anemia, leading to several clinical manifestations such as jaundice, risk of gallstones, splenomegaly, functional hyposplenia, and reticulocytosis ³⁶. The severity of anemia in HS varies, ranging from mild to severe ³⁷.

The bar chart in Figure 1 summarizes the clinical features of HS reported in five pediatric studies comprising 137 patients published between 1991 and 2021 38, 39, 40, 41, 42. Most pediatric cases present with anemia, followed by splenomegaly, transfusion requirement, jaundice, and neonatal jaundice. HS is more frequent in Northern Europeans than in Southeast Asians. The number of pediatric patients with gallstones was relatively low. Nevertheless, the current incidence and prevalence of HS in Malaysia remain unknown because of the limited number of publications 37, 38, 39, 40, 41, 42.

Enzymopathy

Moreover, glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy worldwide, particularly in children. The G6PD gene is located on the X chromosome, specifically in the subtelomeric region (Xq28)⁴³. The enzyme maintains cellular homeostasis by generating reduced nicotinamide adenine dinucleotide phosphate (NADPH), thereby protecting erythrocytes from oxidative damage and premature destruction; it also functions as a housekeeping enzyme by limiting injury caused by reactive oxygen species (ROS). Because the G6PD gene is X-linked, males are more frequently affected than females: a hemizygous male requires only one defective allele to manifest G6PD deficiency, whereas females possess two copies of the gene and may be homozygous normal, heterozygous (intermediate), or homozygous deficient 44,45. Individuals with G6PD deficiency may develop acute hemolytic anemia following exposure to oxidative foods, medications, or chemical agents-such as fava beans, antimalarial drugs, and aspirin 46, 47, 48.

The global prevalence of G6PD deficiency is approximately 4.9 % ⁴⁹. A study by Ainoon et al. ⁵⁰ described a boy with a history of recurrent fever, pallor, and


dark-colored urine after exposure to mosquito repellent and traditional Chinese herbs; laboratory evaluation confirmed hemolytic anemia, and molecular analysis identified a 24-bp deletion of nucleotides 953–976 in exon 9 of the G6PD gene ⁴⁹, ⁵⁰. A prevalence of 14.4 % was reported among 118 children aged 2–5 years ⁴⁴. The predominance in males is consistent with the requirement for biallelic mutations in females to express the phenotype ⁵¹, ⁵². Consequently, neonatal screening in high-prevalence regions, parental education on the avoidance of oxidative triggers, and genetic counseling are recommended to prevent hemolytic crises and support atrisk families.

Acquired anemia

Acquired anemia may arise from iron deficiency, dietary insufficiency, inflammation, menorrhagia, chronic disorders, and infectious diseases ⁵³, ⁵⁴. Most conditions associated with anemia can be classified into three major groups: anemia of chronic disease, infectious anemia, and nutritional deficiency anemia ⁵⁵.

Anemia of chronic disease (ACD), also referred to as anemia of chronic inflammation, is one of the most common causes of acquired anemia⁵⁶,⁵⁷,⁵⁸. Its pathogenesis is mediated by cytokines-including interferon (IFN), interleukins (IL), tumor necrosis factor (TNF), and hepcidin—released after activation of T lymphocytes and macrophages in malignancy and autoimmune disorders. These mediators downregulate erythropoietin receptors through sustained release of pro-inflammatory cytokines and the generation of reactive oxygen species ⁵⁹. Consequently, interferon-y (IFN-y) exerts direct toxicity on erythroid progenitors, thereby worsening the severity of ACD60. A concomitant reduction in circulating erythropoietin further aggravates the anemia 61. Inflammatory signaling depletes functional iron stores, leading to a fall in hemoglobin concentration 62. Disruption of iron homeostasis and a shortened red-cell lifespan further contribute to the pathophysiology of ACD⁶³. Accordingly, the peripheral blood film is typically normocyticnormochromic, although microcytosis can emerge in advanced disease 58,64.

Chronic kidney disease (CKD) is a major cause of ACD because renal impairment limits erythropoietin synthesis. CKD is defined as structural or functional kidney damage with a glomerular filtration rate (GFR) below 60 mL/min/1.73 m² 65. If left untreated, CKD markedly increases the risk of adverse

Figure 1: Clinical features of hereditary spherocytosis in 137 patients. The bar chart summarizes the frequency of common clinical manifestations reported across five pediatric studies. **Abbreviation**: HS = Hereditary spherocytosis.

events, including stroke 66. CKD is stratified into five stages of renal dysfunction, which are often asymptomatic in the early phases. Previous studies report a high prevalence of severe normocytic anemia in older adults with stage 5 CKD 67. The prevalence of CKD in children has risen steadily since the 1980s, paralleling an increase in anemia 68. In paediatric patients, CKD-related anemia adversely affects growth and quality of life 68,69. Anemic CKD further heightens the risk of cardiovascular complications 70. CKD-associated anemia is characterized by reduced hemoglobin concentration and a shortened erythrocyte lifespan 71. In the Korean KNOW-PedCKD cohort, Lee et al. (2019) demonstrated that school-aged children with stage 4 CKD had a 31.4 % prevalence of anemia, significantly higher than in earlier stages. Similarly, >20 % of paediatric patients reach end-stage renal disease (ESRD) with concomitant anemia 72, 73. Salman et al. (2016) found an anemia prevalence of 83.3 % among female CKD patients in north-eastern Peninsular Malaysia; 79 % had severe and 34.4 % had moderate anemia. Declines in Hb, MCH, and MCHC correlated with worsening renal function in these patients 74. The primary mechanism is inadequate erythropoietin (EPO) production by the diseased kidney, which impairs erythropoiesis 75. Ageing further diminishes EPO responsiveness, exacerbating anemia 76.

Infectious diseases contribute to anemia by disrupting iron metabolism and altering systemic iron balance. In children, the most common infectious contributors are parasitic infections—particularly soil-transmitted helminths (STH) and malaria 77. STH ova mature in soil, facilitating transmission of intestinal worms that disproportionately affect school-aged children. Risk factors include barefoot outdoor play, inadequate hand hygiene, and poor nail care, which enable larval penetration. Prevalence studies of STH-related anemiaprincipally involving hookworm (Necator americanus, Ancylostoma duodenale), Ascaris lumbricoides, and Trichuris trichiura-are summarized in Table 2⁷⁸, ⁶⁹, ⁷¹, ⁷⁹, ⁸⁰. STH infection causes gastrointestinal blood loss and impairs nutrient absorption, culminating in iron-deficiency anemia⁷¹. Hookworms secrete anticoagulant molecules that perpetuate occult gastrointestinal bleeding and chronic IDA⁷⁹. Low socioeconomic status and specific geographic settings are independently associated with STH burden, underscoring the need for integrated control strategies 78, 69, 71, 79, 80.

Malaria is another major infection underlying pediatric anemia. Disease severity correlates with transmission intensity, vector density, longevity, biting behaviour, and vector competence. Plasmodium falciparum and P. vivax predominate and are highly prevalent in Asia and sub-Saharan Africa ⁸¹.

Table 2: Prevalence of soil transmitted helminth (STH) associated with anemia among children based on many study

•											
No	Ref- er- ences	Coun- try	Study popula- tion	Sam- ple size	Type of study	Laboratory Technique	Prevalence (%		: (%)		
							Ane- mia	STH	Hook- worm	Round- worm	Whip- worm
1	78	Malay	School children	254	cross sec- tional	Kato-Katz	41	93.7	3.9	47.6	84.6
2	69	Malay	School children	148	cross sec- tional	Formalin ether concentration	37.8	37.20	8.70	44.90	46.40
3	71	In- done- sia	School children	82	cross sec- tional	Kato-Katz	2.40	7.30	non de- tected	3.70	2.40
4	79	In- done- sia	Preschool children	393	cross sec- tional	Kato-Katz	60.30	58.80	9.2	47.40	36.80
5	80	Thai- land	School children	375	cross sec- tional	Formalin ether concentration	6.40	47.70	0.50	13.30	16.30

Note: STH = Soil-transmitted helminths

Between 2000 and 2019, 279 paediatric cases of malaria-associated anemia were reported (Table 3). The majority involved P. falciparum, which is notorious for severe disease and marked haemolysis 81, 82, 83, 84.

Nutrient deficiencies are a common cause of anemia, particularly in children of both sexes. Dietary imbalances increase the risk of the most prevalent micronutrient deficiencies, namely vitamin B12, folic acid and, in particular, iron deficiency ⁸⁵. Prolonged depletion of vitamin B12, folic acid or iron stores leads to megaloblastic anemia, iron-deficiency anemia, or to the simultaneous occurrence of both ⁸⁶.

Adequate iron intake is essential for fetal and infant development ⁸⁷, ⁸⁸. Iron deficiency is the most widespread nutritional inadequacy associated with anemia; it affects more than 30 % of the global population and is the leading contributor to the condition ¹, ⁸⁹, ⁹⁰. Malnutrition significantly lowers haemoglobin, mean corpuscular haemoglobin (MCH) and mean corpuscular volume (MCV) in children under five years of age. The prevalence of irondeficiency anemia (IDA) and iron deficiency (ID) is about 40 % among pre-school children in low- and middle-income countries ⁹¹. Among five-year-old children, the prevalence of IDA is 18.6 % (55/295). In Malaysia, approximately 4 % of primary-school children are anemic ⁹², ⁹³. Long-term IDA adversely af-

fects neurodevelopment, including neurotransmitter metabolism and memory function ⁹⁴.

These findings underscore the substantial burden of anemia in paediatric populations, particularly in endemic regions where repeated infections such as malaria and co-existing nutritional deficiencies further aggravate anemia severity.

CONCLUSION

Addressing pediatric anemia requires an integrated approach that combines clinical interventions, public-health initiatives, and ongoing research. For inherited disorders such as HbE/βthalassemia, expansion of newborn screening, provision of genetic counseling, and investigation of genetic modifiers are critical for early detection and optimum management. In cases of acquired anemia, priority should be given to strengthening nutrition programmes, implementing infectioncontrol measures, and increasing public awareness. Enhanced global collaboration among researchers, policy-makers, and public-health agencies is essential to develop sustainable solutions and to mitigate the worldwide burden of childhood anemia. Nevertheless, substantial knowledge gaps persist, particularly regarding the contribution of genetic modifiers to inherited anemias and the optimisation of targeted therapies. Additional investigations into

Table 3: Summary for malaria cases that is associated with anemia condition

No	Country	Years of study	No sam- ple	Age (years old)	Species	Anemic (Hb level in g/dL)	Se- vere	Mod- er- ate	Mild	Ref- er- ences
1	Malaysia	2009	220	<15	P.knowlesi & P. Falciparum	30 (<10)	NS	NS	NS	81
2	Vietnam	2012- 2019	47	<15	P. falciparum	47 (<11)	3	44	0	82
3	Laos	2010- 2011	319	2.5-10	P. falciparum	92 (11.5)	2	49	41	83
4	Thailand- Myanmar Border	2000- 2016	926	<15	P. falciparum & P. vivax	110 (<5)	110	NS	NS	84

Abbreviation: Hb-hemoglobin, P.- Plasmodium, NS-not stated

epigenetic determinants of disease severity, innovative pharmacotherapies, and affordable gene-based treatments are required to transform the management of anemia.

ABBREVIATIONS

ACD: Anemia of Chronic Disease; CKD: Chronic Kidney Disease; EPO: Erythropoietin; ESRD: End-Stage Renal Disease; FRGS: Fundamental Research Grant Scheme; GFR: Glomerular Filtration Rate; G6PD: Glucose-6-Phosphate Dehydrogenase; Hb: Hemoglobin; HS: Hereditary Spherocytosis; IDA: Iron-Deficiency Anemia; IFN: Interferon; IFN-γ: Interferon-gamma; IL: Interleukins; MCH: Mean Corpuscular Hemoglobin; MCHC: Mean Corpuscular Hemoglobin; MCHC: Mean Corpuscular Volume; NADPH: Nicotinamide Adenine Dinucleotide Phosphate; RBCs: Red Blood Cells; ROS: Reactive Oxygen Species; STH: Soil-Transmitted Helminths; TNF: Tumor Necrosis Factor; WHO: World Health Organization

ACKNOWLEDGMENTS

This study was supported by Fundamental Research Grant Scheme (FRGS); 203.PPSP.6171251.

Author's contributions

Siti Nur Nabeela A'ifah Mohammad and Zefarina Zulkafli contributed to conceptualization; Wan Suriana Wan Ab Rahman and Mohd Nazri Hassan were involved in methodology; Siti Nur Nabeela A'ifah Mohammad and Zefarina Zulkafli contributed to writing original draft preparation; Hisham Atan Edinur, Wan Suriana Wan Ab Rahman and Mohd Nazri Hassanwere involved in writing, review and editing; and all authors have read, approved the final manuscript and agreed to the published.

Funding

None.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Declaration of generative AI and Alassisted technologies in the writing pro-

The authors declare that they have not used generative AI (a type of artificial intelligence technology that can produce various types of content including text, imagery, audio and synthetic data. Examples include ChatGPT, NovelAI, Jasper AI, Rytr AI, DALL-E, etc) and AI-assisted technologies in the writing process before submission.

Competing interests

The authors declare that they have no competing interests.

REFERENCES

- McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr. 2009 Apr;12(4):444-454. PMID: 18498676. Available from: https://doi.org/10.1017/S1368980008002401.
- Zuffo CR, Osório MM, Taconeli CA, Schmidt ST, da Silva BH, Almeida CC. Prevalence and risk factors of anemia in children. J Pediatr (Rio J). 2016;92(4):353–360. PMID: 26893206. Available from: https://doi.org/10.1016/j.jped.2015.09.007.

- Konstantyner T, Cláudia T, Oliveira R, Augusto De Aguiar J, Taddei C. Risk Factors for Anemia among Brazilian Infants from the 2006 National Demographic Health Survey. 2012;.
- Kim Y, Park J, Kim M. Diagnostic approaches for inherited hemolytic anemia in the genetic era. Blood Research. 2017;52:84-94
- Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5(1):11. Available from: https://doi.org/10.1186/1750-1172-5-11.
- Kohne E. Hemoglobinopathies: Clinical Manifestations, Diagnosis, and Treatment. Dtsch Arztebl Int. 2011 Aug;108(31-32):532.
- Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010 Feb;12(2):61–76. PMID: 20098328. Available from: https://doi. org/10.1097/GIM.0b013e3181cd68ed.
- Yousuf R, Akter S, Wasek SM, Sinha S, Ahmad R, Haque M. Thalassemia: A Review of the Challenges to the Families and Caregivers. Cureus. 2022 Dec; Available from: https://doi.org/ 10.7759/cureus.32491.
- Chandra Sharma D, Arya A, Kishor P, Woike P, Bindal J. Overview on Thalassemias: A review article. Med Res Chronicles. 2017;4(3):325–337.
- Zhong K, Shi H, Wu W, Xu H, Wang H, Zhao Z. Genotypic spectrum of α-thalassemia and β-thalassemia in newborns of the Li minority in Hainan province, China. Front Pediatr. 2023 Mar;11. PMID: 37020650. Available from: https://doi.org/10. 3389/fped.2023.1139387.
- Chan LC, Ma SK, Chan AY, Ha SY, Waye JS, Lau YL. Should we screen for globin gene mutations in blood samples with mean corpuscular volume (MCV) greater than 80 fL in areas with a high prevalence of thalassaemia? J Clin Pathol. 2001 Apr;54(4):317–320. PMID: 11304851. Available from: https://doi.org/10.1136/jcp.54.4.317.
- Vijian D, Wan Ab Rahman WS, Ponnuraj KT, Zulkafli Z, Bahar R, Yasin N. Gene Mutation Spectrum among Alpha-Thalassaemia Patients in Northeast Peninsular Malaysia. Diagnostics (Basel). 2023 Feb;13(5):894. PMID: 36900038. Available from: https://doi.org/10.3390/diagnostics13050894.
- Srivorakun H, Fucharoen G, Changtrakul Y, Komwilaisak P, Fucharoen S. Thalassemia and hemoglobinopathies in Southeast Asian newborns: diagnostic assessment using capillary electrophoresis system. Clin Biochem. 2011 Apr;44(5-6):406– 411. PMID: 21277293. Available from: https://doi.org/10.1016/ j.clinbiochem.2011.01.006.
- Bahar R, Sahid SM, Ramli M, Noor NH, Yusoff SM, Arifin SM. Molecular and haematological characterization of deletional alpha thalassemia in northeastern Malaysia. Bangladesh J Med Sci. 2023 Apr;22(2):410–415. Available from: https://doi. org/10.3329/bjms.v22i2.65005.
- George E, Rahman Jamal A, Khalid F, Ariffin Osman K, Malaysia K, Yaacob Latif J. High Performance Liquid Chromatography (HPLC) as a Screening Tool for Classical Beta-Thalassaemia Trait in Malaysia. Malays J Med Sci. 2001 Jul;8(2):40.
- Ismail A, Campbell MJ, Ibrahim HM, Jones GL. Health related quality of life in Malaysian children with thalassaemia. Health Qual Life Outcomes. 2006 Jul;4:39. Available from: https://doi. org/10.1186/1477-7525-4-39.
- Kattamis A, Forni GL, Aydinok Y, Viprakasit V. Changing patterns in the epidemiology of β-thalassemia. Eur J Haematol. 2020 Dec;105(6):692. Available from: https://doi.org/10.1111/ejh.13512.
- Thom CS, Dickson CF, Gell DA, Weiss MJ. Hemoglobin Variants: Biochemical Properties and Clinical Correlates. Cold Spring Harb Perspect Med. 2013 Mar;3(3).
- Fucharoen S, Weatherall DJ. The Hemoglobin E Thalassemias. Cold Spring Harb Perspect Med. 2012;2(8).
- Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt
 The distribution of haemoglobin C and its prevalence in newborns in Africa. Sci Rep. 2013;3:1671. PMID: 23591685. Available from: https://doi.org/10.1038/srep01671.
- 21. Karna B, Jha SK, Al Zaabi E. Hemoglobin C Disease. 2020 Nov;.

- Sebastiani P, Farrell JJ, Alsultan A, Wang S, Edward HL, Shappell H. BCL11A enhancer haplotypes and fetal hemoglobin in sickle cell anemia. Blood Cells Mol Dis. 2015 Mar;54(3):224–230. PMID: 25703683. Available from: https://doi.org/10.1016/i.bcmd.2015.01.001.
- Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L. Sickle cell disease. Nat Rev Dis Primers. 2018 Mar;4(1):18010. PMID: 29542687. Available from: https://doi. org/10.1038/nrdp.2018.10.
- Mohd Ibrahim H, Muda Z, Othman IS, Mohamed Unni MN, Teh KH, Thevarajah A. Observational study on the current status of thalassaemia in Malaysia: a report from the Malaysian Thalassaemia Registry. BMJ Open. 2020 Jun;10(6):e037974.
 PMID: 32601117. Available from: https://doi.org/10.1136/ bmjopen-2020-037974.
- Hanafi SB, Abdullah WZ, Adnan RA, Bahar R, Johan MF, Azman NF. Genotype-Phenotype Association of Hbe/β-Thalassemia Disease and the Role of Genetic Modifiers. Malaysian J Paediatr Child Heal. 2016 Jun;22:1–16.
- Olivieri NF, Pakbaz Z, Vichinsky E. Hb E/beta-thalassemia: A common & clinically diverse disorder. Indian J Med Res. 2011;134:522–531.
- Sirachainan N, Chuansumrit A, Kadegasem P, Sasanakul W, Wongwerawattanakoon P, Mahaklan L. Normal hemostatic parameters in children and young adults with α-thalassemia diseases. Thromb Res. 2016 Oct;146:35–42. PMID: 27572718. Available from: https://doi.org/10.1016/j.thromres.2016.08.024.
- Sharma V, Kumar B, Ahuja R, Saxena R. High Frequency of Thrombogenic Markers in Polytransfused HbE-Thalassemia. Blood. 2007 Nov;110(11):3983. Available from: https://doi.org/ 10.1182/blood.V110.11.3983.3983.
- Wastnedge E, Waters D, Patel S, Morrison K, Goh MY, Adeloye D. The global burden of sickle cell disease in children under five years of age: A systematic review and meta-analysis. J Glob Health. 2018;8(2).
- Adam MA, Adam NK, Mohamed BA. Prevalence of sickle cell disease and sickle cell trait among children admitted to Al Fashir Teaching Hospital North Darfur State, Sudan. BMC Res Notes. 2019 Oct;12(1):659. PMID: 31619285. Available from: https://doi.org/10.1186/s13104-019-4682-5.
- Grosse SD, Odame I, Atrash HK, Amendah DD, Piel FB, Williams TN. Sickle cell disease in Africa: A neglected cause of early childhood mortality. Am J Prev Med. 2011;41:S398–S405.
- Françoise NS, Njangtang DM, Chemegni BC, Djientcheu VP. Prevalence of sickle cell disease in newborns in the Yaounde Central Hospital. J Med Res. 2017 Dec;3(6):277–279. Available from: https://doi.org/10.31254/jmr.2017.3607.
- Tshilolo L, Aissi LM, Lukusa D, Kinsiama C, Wembonyama S, Gulbis B. Neonatal screening for sickle cell anaemia in the Democratic Republic of the Congo: experience from a pioneer project on 31 204 newborns. J Clin Pathol. 2009 Jan;62(1):35– 38. PMID: 19103857. Available from: https://doi.org/10.1136/ jcp.2008.058958.
- Meier ER, Miller JL. Sickle cell disease in children. Drugs. 2012 May;72(7):895–906. PMID: 22519940.
- Steward SC, Chauvenet AR, O'Suoji C. Hereditary spherocytosis: Consequences of delayed diagnosis. SAGE Open Med. 2014 Jan:Available from: 205031211454709.
- Pizzi M, Fuligni F, Santoro L, Sabattini E, Ichino M, De Vito R. Spleen histology in children with sickle cell disease and hereditary spherocytosis: hints on the disease pathophysiology. Hum Pathol. 2017 Feb;60:95–103. PMID: 27771375. Available from: https://doi.org/10.1016/j.humpath.2016.09.028.
- Ciepiela O. Old and new insights into the diagnosis of hereditary spherocytosis. Ann Transl Med. 2018 Sep;6(17):339–339.
 PMID: 6174190. Available from: https://doi.org/10.21037/atm. 2018.07.35.
- Sultana MM, Islam MS, Mia MS. Hereditary Spherocytosis in a 22 Month Old Child. TAJ J Teach Assoc. 2018 Dec;30(2):79–82.
 Available from: https://doi.org/10.3329/taj.v30i2.39143.
- 39. Das A, Bansal D, Das R, Trehan A, Marwaha RK. Hereditary

- spherocytosis in children: profile and post-splenectomy outcome. Indian Pediatr. 2014 Feb;51(2):139–141. PMID: 24632695. Available from: https://doi.org/10.1007/s13312-014-0348-5.
- Koh MT, Ng SC. Hereditary spherocytosis: a study of 16 patients from University Hospital, Kuala Lumpur. Singapore Med J. 1991;32(1):67–69. PMID: 2017710.
- Wu Y, Liao L, Lin F. The diagnostic protocol for hereditary spherocytosis-2021 update. J Clin Lab Anal. 2021 Dec;35(12):e24034. PMID: 34689357. Available from: https://doi.org/10.1002/jcla.24034.
- 42. Xie F, Lei L, Cai B, Gan L, Gao Y, Liu X, et al. Clinical manifestation and phenotypic analysis of novel gene mutation in 28 Chinese children with hereditary spherocytosis. Mol Genet Genomic Med. 2021 Apr;9(4):e1577. PMID: 33620149. Available from: https://doi.org/10.1002/mgg3.1577.
- Reading NS, Sirdah MM, Shubair ME, Nelson BE, Al-Kahlout MS, Al-Tayeb JM, et al. Favism, the commonest form of severe hemolytic anemia in Palestinian children, varies in severity with three different variants of G6PD deficiency within the same community. Blood Cells Mol Dis. 2016 Sep;60:58–64. PMID: 27519946. Available from: https://doi.org/10.1016/j.bcmd.2016.07.001.
- Isaac IZ, Mainasara AS, Erhabor O, Omojuyigbe ST, Dallatu MK, Bilbis LS, et al. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria. 2013;p. 557–562.
- Shenkutie TT, Nega D, Hailu A, Kepple D, Witherspoon L, Lo E, et al. Prevalence of G6PD deficiency and distribution of its genetic variants among malaria-suspected patients visiting Metehara health centre, Eastern Ethiopia. Malar J. 2022 Sep;21(1):260. PMID: 36076204. Available from: https://doi.org/10.1186/s12936-022-04269-5.
- Baldwin C, Olarewaju O. Hemolytic Anemia. In: StatPearls. StatPearls Publishing; 2020. Available from: https://www.ncbi. nlm.nih.gov/books/NBK558904/#NBK558904_pubdet.
- Hernández-Pérez D, Butrón-Téllez Girón C, Ruiz-Rodríguez S, Garrocho-Rangel A, Pozos-Guillén A. Dental considerations in children with glucose-6-phosphate dehydrogenase deficiency (favism): A review of the literature and case report. Case Rep Dent. 2015;2015:506459. PMID: 26435857. Available from: https://doi.org/10.1155/2015/506459.
- Ladogana S, Maruzzi M, Samperi P, Perrotta S, Del Vecchio GC, Notarangelo LD, et al. Diagnosis and management of newly diagnosed childhood autoimmune haemolytic anaemia. Recommendations from the Red Cell Study Group of the Paediatric Haemato-Oncology Italian Association. Blood Transfus. 2017 May:15(3):259–267. PMID: 28151390/.
- Mansor H, Tohit ER, Idris F, Rahman AA. Prevalence, sociodemographic and clinical characteristics of G6PD deficient blood donors in Terengganu and the effects of storage on their donated blood. Malaysian J Med Heal Sci. 2020;16(2):126–134.
- Ainoon O, Boo NY, Yu YH, Cheong SK, Hamidah HN. G6PD deficiency with hemolytic anemia due to a rare gene deletion a report of the first case in Malaysia. Hematology. 2006 Apr;11(2):113–118. PMID: 16753852. Available from: https://doi.org/10.1080/10245330500155184.
- Lee HY, Ithnin A, Azma RZ, Othman A, Salvador A, Cheah FC. Glucose-6-Phosphate Dehydrogenase Deficiency and Neonatal Hyperbilirubinemia: Insights on Pathophysiology, Diagnosis, and Gene Variants in Disease Heterogeneity. Front Pediatr. 2022 May;10:875877. PMID: 35685917. Available from: https://doi.org/10.3389/fped.2022.875877.
- Gampio Gueye NS, Peko SM, Nderu D, Koukouikila-Koussounda F, Vouvoungui C, Kobawila SC, et al. An update on glucose-6-phosphate dehydrogenase deficiency in children from Brazzaville, Republic of Congo. Malar J. 2019 Feb;18(1):57. PMID: 30819192. Available from: https://doi.org/10.1186/s12936-019-2688-z.
- Balarajan Y, Ramakrishnan U, Özaltin E, Shankar AH, Subramanian SV. Anaemia in low-income and middle-income countries. Lancet. 2011 Dec;378(9809):2123–2135. PMID: 21813172.

- Available from: https://doi.org/10.1016/S0140-6736(10)62304-5
- Sankaran VG, Weiss MJ. Anemia: Progress in molecular mechanisms and therapies. Nat Med. 2015;21(3):221–230.
- Moreno Chulilla JA, Romero Colás MS, Gutiérrez Martín M. Classification of anemia for gastroenterologists. World J Gastroenterol. 2009 Oct;15(37):4627–4637. PMID: 19787825. Available from: https://doi.org/10.3748/wjg.15.4627.
- Poggiali E, Migone De Amicis M, Motta I. Anemia of chronic disease: a unique defect of iron recycling for many different chronic diseases. Eur J Intern Med. 2014 Jan;25(1):12–17. PMID: 23988263. Available from: https://doi.org/10.1016/j.ejim.2013. 07.011.
- Weiss G. Pathogenesis and treatment of anaemia of chronic disease. Blood Rev. 2002 Jun;16(2):87–96. PMID: 12127952. Available from: https://doi.org/10.1054/blre.2002.0193.
- Ganz T. Molecular pathogenesis of anemia of chronic disease. Pediatr Blood Cancer. 2006 May;46(5):554–557. PMID: 16261603. Available from: https://doi.org/10.1002/pbc.20656.
- Morceau F, Dicato M, Diederich M. Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm. 2009;2009:405016.
 PMID: 20204172. Available from: https://doi.org/10.1155/2009/ 405016.
- Wang CQ, Udupa KB, Lipschitz DA. Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development. J Cell Physiol. 1995 Jan;162(1):134–138. PMID: 7814445. Available from: https://doi.org/10.1002/jcp.1041620116.
- Cullis JO. Diagnosis and management of anaemia of chronic disease: current status. Br J Haematol. 2011 Aug;154(3):289– 300. PMID: 21615381. Available from: https://doi.org/10.1111/ j.1365-2141.2011.08741.x.
- Madu AJ, Ughasoro MD. Anaemia of Chronic Disease: An In-Depth Review. Med Princ Pract. 2017;26(1):1–9. PMID: 27756061. Available from: https://doi.org/10.1159/000452104.
- Cherayil BJ. Pathophysiology of iron homeostasis during inflammatory states. J Pediatr. 2015;167:15–19. Available from: https://doi.org/10.1016/j.jpeds.2015.07.015.
- Cullis J. Anaemia of chronic disease. Clin Med J R Coll Physicians London. 2013 Apr;13(2):193–196. Available from: https://doi.org/10.7861/clinmedicine.13-2-193.
- Shaikh H, Aeddula NR. Anemia Of Chronic Renal Disease. StatPearls Publishing; 2020. Available from: https://www.ncbi. nlm.nih.gov/books/NBK539871/.
- Abramson JL, Jurkovitz CT, Vaccarino V, Weintraub WS, Mc-Clellan W. Chronic kidney disease, anemia, and incident stroke in a middle-aged, community-based population: the ARIC Study. Kidney Int. 2003 Aug;64(2):610–615. PMID: 12846757. Available from: https://doi.org/10.1046/j.1523-1755. 2003.00109.x.
- Salman M, Khan AH, Adnan AS, Sulaiman SA, Hussain K, Shehzadi N, et al. Prevalence and management of anemia in predialysis Malaysian patients: A hospital-based study. Rev Assoc Med Bras. 2016 Nov;62(8):742–747. PMID: 27992014. Available from: https://doi.org/10.1590/1806-9282.62.08.742.
- Becherucci F, Roperto RM, Materassi M, Romagnani P. Chronic kidney disease in children. Nephrology. 2016;9(4):583–591. Available from: https://doi.org/10.1093/ckj/sfw047.
- Alaribi FI, Unyah NZ, Misni N, Masri SN, Osman M. The prevalence of soil-transmitted helminths infection and its association with anaemia among refugee school children in the Klang Valley, Malaysia. Malaysian Journal of Medicine and Health Sciences. 2020;16:46–53.
- Lee KH, Park E, Choi HJ, Kang HG, Ha IS, Cheong HI, et al. Anemia and Iron Deficiency in Children with Chronic Kidney Disease (CKD): Data from the Know-Ped CKD Study. J Clin Med. 2019 Jan;8(2):152. PMID: 30700016. Available from: https://doi.org/10.3390/jcm8020152.
- Sari M, Nathasaria T, Majawati E, Pangaribuan H. Soil-Transmitted Helminth Infections, Anemia, and Undernutrition

- Among School-Children in An Elementary School in North Jakarta, Indonesia. Maj Kedokt Bdg. 2020;52(4):205–212. Available from: https://doi.org/10.15395/mkb.v52n4.2137.
- Ardissino G, Daccò V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E, et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003 Apr;111(4 Pt 1):e382–e387. PMID: 12671156. Available from: https://doi.org/ 10.1542/peds.111.4.e382.
- Der Medizinischen K, Hannover H. Pediatric Nephrology Occasional survey Association: 20 years 'experience. Pediatr Nephrol. 1993;p. 758–768.
- Poudel B, Yadav BK, Jha B, Raut KB, Pandeya DR. Prevalence and association of anemia with CKD: A hospital based crosssectional study from Nepal. Biomed Res. 2013;24(1):99–103.
- Akizawa T, Okumura H, Alexandre AF, Fukushima A, Kiyabu G, Dorey J. Burden of Anemia in Chronic Kidney Disease Patients in Japan: A Literature Review. Ther Apher Dial. 2018 Oct;22(5):444–456. PMID: 30022586. Available from: https://doi.org/10.1111/1744-9987.12712.
- Kuragano T, Mizusaki K, Kimura T, Nakanishi T. Contributions to Nephrology. 2019;p. 135–143. PMID: 30991408.
- Matangila JR, Doua JY, Linsuke S, Madinga J, Inocêncio Da Luz R, Van Geertruyden JP, et al. Malaria, schistosomiasis and soil transmitted helminth burden and their correlation with anemia in children attending primary schools in kinshasa, democratic republic of congo. PLoS One. 2014 Nov;
- Ahmed A, Al-Mekhlafi HM, Al-Adhroey AH, Ithoi I, Abdulsalam AM, Surin J. The nutritional impacts of soil-transmitted helminths infections among Orang Asli schoolchildren in rural Malaysia. Parasit Vectors. 2012 Jun;5(1):119. PMID: 22704549. Available from: https://doi.org/10.1186/1756-3305-5-119.
- Djuardi Y, Lazarus G, Stefanie D, Fahmida U, Ariawan I, Supali T. Soil-transmitted helminth infection, anemia, and malnutrition among preschool-age children in Nangapanda subdistrict, Indonesia. PLoS Negl Trop Dis. 2021 Jun;15(6):e0009506. PMID: 34138863. Available from: https://doi.org/10.1371/journal.pntd.0009506.
- Yanola J, Nachaiwieng W, Duangmano S, Prasannarong M, Pornprasert S. Current prevalence of intestinal parasitic infections and their impact on hematological and nutritional status among Karen hill tribe children in Omkoi District, Chiang Mai Province, Thailand. Acta Trop. 2018 Apr;180:1–6. PMID: 29306723. Available from: https://doi.org/10.1016/j.actatropica. 2018.01.001.
- 81. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al. A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis. 2013 Feb;56(3):383–397. PMID: 23087389. Available from: https://doi.org/10.1093/cid/cis902.
- Ha MT, Ho TA, Nguyen AN, Nguyen TA. Characteristics of severe malaria in hospitalized children in Ho Chi Minh City from 2012 to 2019. Trop Biomed. 2021 Sep;38(3):371–376. PMID: 34508346. Available from: https://doi.org/10.47665/tb.38.3.082.

- Akiyama T, Pongvongsa T, Phrommala S, Taniguchi T, Inamine Y, Takeuchi R, et al. Asymptomatic malaria, growth status, and anaemia among children in Lao People's Democratic Republic: a cross-sectional study. Malar J. 2016 Oct;15(1):499. PMID: 27756399. Available from: https://doi.org/10.1186/s12936-016-1548-3.
- 84. Chu CS, Stolbrink M, Stolady D, Saito M, Beau C, Choun K, et al. Severe Falciparum and Vivax Malaria on the Thailand-Myanmar Border: A Review of 1503 Cases. Clin Infect Dis. 2023 Sep;77(5):721–728. PMID: 37144342. Available from: https://doi.org/10.1093/cid/ciad262.
- Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet. 2007 Aug;370(9586):511–520. PMID: 17693180. Available from: https://doi.org/10.1016/S0140-6736(07)61235-5.
- Johnson-Wimbley TD, Graham DY. Diagnosis and management of iron deficiency anemia in the 21st century. Therap Adv Gastroenterol. 2011 May;4(3):177–184. PMID: 21694802.
 Available from: https://doi.org/10.1177/1756283X11398736.
- Abu-Ouf NM, Jan MM. The impact of maternal iron deficiency and iron deficiency anemia on child's health. Saudi Medical Journal. 2015;36(2):146–149. Available from: https://doi.org/10. 15537/smj.2015.2.10289.
- King JC. Physiology of pregnancy and nutrient metabolism.
 American Journal of Clinical Nutrition. 2000 May;71(5
 Suppl):1218S-1225S. PMID: 10799394. Available from: https://doi.org/10.1093/ajcn/71.5.1218s.
- Jafari Nodoshan AH, Hashemi A, Golzar A, Karami F, Akhondzaraini R. Hematological Indices in Children with Nonorganic Failure to Thrive: a Case-Control Study. Iranian Journal of Pediatric Hematology and Oncology. 2016;6(1):38–42. PMID: 27222701.
- Bailey RL, West KJ, Black RE. The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism. 2015;66 Suppl 2:22–33. PMID: 26045325. Available from: https://doi.org/10.1159/000371618.
- Mantadakis E, Chatzimichael E, Zikidou P. Iron Deficiency Anemia in Children Residing in High and Low-Income Countries: Risk Factors, Prevention, Diagnosis and Therapy. Mediterranean Journal of Hematology and Infectious Diseases. 2020 Jul;12(1):e2020041. PMID: 32670519. Available from: https://doi.org/10.4084/mjhid.2020.041.
- Yusof M, Awaluddin SM, Omar M, Ahmad NA, Abdul Aziz FA, Jamaluddin R, et al. Prevalence of Anaemia among the Elderly in Malaysia and Its Associated Factors: Does Ethnicity Matter? Journal of Environmental and Public Health. 2018;2018.
- Nik Shanita S, Siti Hanisa A, Noor Afifah AR, Lee ST, Chong KH, George P, et al. Prevalence of anaemia and iron deficiency among primary schoolchildren in Malaysia. International Journal of Environmental Research and Public Health. 2018 Oct;15(11):2332. PMID: 30360488.
- Baker RD, Greer FR, Bhatia JJ, Abrams SA, Daniels SR, Schneider MB, et al. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age). Pediatrics. 2010 Nov;126(5):1040–1050. PMID: 20923825. Available from: https://doi.org/10.1542/peds.2010-2576.