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Abstract— Introduction: Endothelial progenitor cells (EPCs) are important progenitor cells in vasculogenesis as 
well as in tissue engineering. However, few EPCs can be isolated from bone marrow, peripheral blood and umbilical 
cord blood. Moreover, their in vitro proliferation potential is also limited. Therefore, this study aimed to produce 
EPCs from direct reprogramming of fibroblasts by transduction with certain specific factors. Methods: Human 
fibroblasts were collected from human skin by published protocols. The cells were transduced with 2 viral vectors 
containing 5 factors, including Oct3/4, Sox2, Klf4, c-Myc (plasmid 1), and VEGFR2 (plasmid 2). Transduced cells 
were treated with endothelial cell medium for 21 days. The cells were analyzed for expression of Oct3/4, Sox3, 
Klf4, c-Myc and VEGFR2 at day 5, and for EPC phenotype at day 21. Results: The results showed that after 5 days 
of transduction, fibroblasts acquired partial pluripotency. After 21 days of transduction and culture in endothelial cell 
medium, the cells exhibited endothelial markers (e.g. CD31 and VEGFR2) and formed blood vessel-like capillaries. 
Conclusion: Our findings suggest another strategy for direct reprogramming of fibroblasts into EPCs. 
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INTRODUCTION 

Direct reprogramming is a process wherein a 

differentiated adult cell converts into another 

differentiated somatic cell. As a result, direct 

conversion does not pass through an undifferentiated 

pluripotent stage (Van Pham, 2015). This strategy 

enables the generation of patient-specific cell types, 

without formation of pluripotent stem cell-induced 

tumors prior to differentiation. Therefore, this 

reprogramming technology has been a potent tool for 

regenerative medicine.  

Endothelial progenitor cells (EPCs) are one of the most 

important progenitor cells in tissue engineering, 

especially in vasculogenesis and angiogenesis (Chong 

et al., 2016). The use of EPCs has provided effective 

results in treating hindlimb ischemia (Flex et al., 2016; 

Yu et al., 2009), stroke (Bai et al., 2015; Li et al., 2015), 

diabetic ulcer (Gallagher et al., 2006), and myocardial 

infarction (Kawamoto et al., 2003). Although EPCs 

have many advantages, one major disadvantage is 

that very low numbers of these cells can be isolated 

from bone marrow (Hristov et al., 2003), peripheral 

blood (Donndorf et al., 2015), and umbilical cord 

blood (Schmidt et al., 2004; Van Phuc et al., 2012). 

Moreover, their proliferation potential is limited. 

Therefore, this study investigated the production of 

EPCs from direct reprogramming of fibroblasts via 

transduction with defined factors. We show that 

fibroblasts were, indeed, differentiated into EPCs by 

endothelial cell medium containing specific 

endothelial differentiation factors. Thus, the study 

herein demonstrates the application of a direct 

reprogramming technology to reprogram fibroblasts 

into partial pluripotent stem cells.  

DOI 10.7603/s40730-016-0038-0

https://crossmark.crossref.org/dialog/?doi=10.7603/s40730-016-0038-0&domain=pdf&date_stamp=2016-08-30


Truong et al., 2016                                                                                                                          Biomed Res Ther 2016, 3(8): 780-789 
  

    781 
Direct reprogramming of fibroblasts into endothelial progenitor cells 

MATERIALS AND METHODS 

Isolation and culture of human fibroblasts and HEK 

293T 

Human fibroblasts (HFs) were isolated from foreskin, 

according to a previously published protocol (Van 

Pham et al., 2016). Cells were cultured in DMEM/F12 

complete (DMEM/F12, 10% FBS and 1% antibiotic; all 

reagents were bought from Life Technologies, 

Carlsbad, CA) until cells reached 80-90% confluency 

on surface flask. The HFs were then sub-cultured to 

the 3rd passage. Cells were cryopreserved in liquid 

nitrogen until use in experiments. HEK 293T cells 

were obtained from a commercial source (Life 

Technologies, Carlsbad, CA). The cells were thawed 

and cultured at 5 x 106 cells in a 25cm2 flask. HEK 293T 

were also cultured in DMEM/F12 complete.   

Viral vector production  

There were 2 viral vectors used in this study. Vector 1 

contained four factors: Oct3/4, Sox2, Klf4 and c-Myc 

(OKSIM); Vector 2 contained VEGFR2. HEK 293T 

were trypsinized to collect single cells. Then, a 

plasmid containing c-Myc (OKSIM) was co-

transfected into HEK293T cells with pCMV-VSV-G-

RSV-Rev and pCMV-dR8.2 (Addgene, Cambridge, 

MA) to produce Vector 1. Similarly, Vector 2 was 

produced by transfection of HEK293T cells with 

plasmids expressing VEGFR2, pCMV-VSV-G-RSV-

Rev, and pCMV-dR8.2. The mix was transferred into 2 

mm electroporation cuvettes and transfected into cells. 

Immediately after, pre-warmed medium was gently 

added to the transfection mix and transferred into 6-

well plates. The plates was incubated at 37oC, 5% CO2 

for 24 h. After 36 h, supernatant was collected to 

extract viral particles by centrifugation.  

Transduction into HFs 

On the day of transduction, HFs were treated with 

polyprene at the final concentration of 8 μg/mL in 6 h, 

then transduced with both viral vector 1 (containing 

Oct3/4, Sox2, Klf4, and c-Myc) and viral vector 2 

(containing VEGFR2 only). Transduction was 

repeated two independent times, without polyprene 

treatment the second time. The medium was refreshed 

after 2 d of transduction by endothelial cell medium 

and every 3 d until day 21. The endothelial cell 

medium was prepared by M200 medium 

supplemented with 2% fetal bovine serum (FBS), 10 

ng/mL vascular endothelial growth factor (VEGF), 5 

ng/mL epithelial growth factor (EGF), 5 ng/mL basic 

fibroblast growth factor (bFGF), 1 μg/ml 

hydrocortisone, and 90 μg/mL heparin (all chemicals 

and media were bought from Life Technologies, 

Carlsbad, CA).  

Gene expression by reverse transcription polymerase 

chain reaction (RT-PCR) 

Total cellular RNA was extracted with the use of easy-

BLUETM Total RNA Extraction Kit (iNtRON, Korea) 

from cells at day 5. Inducible EPC (iEPC) gene 

expression was detected using a one-step RT-PCR 

premix kit (iNtRON, Korea), according to the 

manufacturer’s protocol. The reaction was performed 

in a thermal realtime PCR cycler (Eppendorf, 

Germany) with amplification of over 30 cycles at 94°C 

for 20 s (denaturing), 50-60°C for 10 s (annealing), and 

72°C for 30 min (primer extension). The primers (AIT 

Biotech, Singapore) used in this experiment are listed 

in Table 1 (F: forward, R: reverse). RNA for GAPDH 

was co-amplified to assess the quality of the samples.  

 

Table 1. Primer sequences of iEPC genes in RT-PCR analysis 

 

STT Gene  Forward primer (5–3′) Reverse primer (5–3′) 

1 OCT4 AAACCCTGGCACAAACTCC GACCAGTGTCCTTTCCTCTG 

2 SOX2  CACATGTCCCAGCACTACC CCATGCTGTTTCTTACTCTCCTC 

3 NANOG ACTCTCCAACATCCTGAACCTC CTTCTGCGTCACACCATTGC 

4 REX1  GTGGGAAAGCGTTCGTTGAG CGCTTTCCGCACCCTTC 

5 VEGFR2 CTCGGCTCACGCAGAACTT GCTGCACAGATAGCGTCCC 

6 GAPDH  GGGAGCCAAAAGGGTCATCA TGATGGCATGGACTGTGGTC 
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Figure 4. Flow cytometry analysis of cell size. A cell population with higher FSC than fibroblasts formed after transduction with 2 

vectors and enrichment in endothelial cell medium. 

 

 

Upregulation of CD31 and VEGFR2  

Expression of CD31 and VEGFR2 were determined by 

flow cytometry and immunocytochemistry. The 

percentage of CD31 positive cells was 3.48 ±0.92 % 

(p>0.05) in transduced cells, and 0% in the control. 

There was a significant increase in the percentage of 

VEGFR2 positive cells too; the percentage was 91.84 ± 

6.41% in transduced cells, and 43.07 ± 3.43% in the 

control.  

The expression of CD31 was also evaluated but via 

immunocytochemistry with anti-CD31 monoclonal 

antibody-PE. The results are represented in Figure 5. 

The results showed that fibroblasts did not express 

CD31 yet the transduced cells did express the CD31 

marker (Fig. 5).  

 

 

Figure 5. Transduced fibroblasts express CD31. Transduced cells expressed CD31 were confirmed by immunocytochemistry with 

anti-CD31 monoclonal antibody conjugated with PE for 3 samples (E-Q), while the control samples was negative (A-D). A,E,I,N: 

cells were captured under white light; B,F,K,O: cells were captured under PE filter; C,G,L,P: cells were captured under Hoeschst 

33342 filter; and D,H,M,Q: the merged images.   
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In vitro formation of blood vessel-like capillaries 

Transduced fibroblasts were cultured in culture 

medium for 20 d. They were used to evaluate the 

invitro formation of blood vessel like capillary in 

matrigel. The results showed that after 18 h of 

incubation, transduced cells were capable of forming 

capillary structure similar to blood vessels (Fig. 

6).Results are similar to using HUVECs; results 

suggest that transduced cells cultured in endothelial 

cell medium can exhibit endothelial progenitor cell 

bio-activity in vitro. 

 

 

 

Figure 6. In vitro formation of blood vessel like capillary of transduced cells. Transduced fibroblasts after culture in endothelial 

cell medium can form blood vessel like capillary (B,C,D), but not in fibroblasts (A).   

 

 

DISCUSSION 

Endothelial progenitor cells as well as endothelial cells 

are important cell sources for regenerative medicine 

and tissue engineering. Therefore, this study aimed at 

generating EPCs by direct reprogramming of 

fibroblasts with 5 factors, including Oct3/4, Sox-2, 

Klf4, c-Myc and VEGFR2, in combination with culture 

in endothelial cell medium. Our study showed that 

the above conditions induced the generation of 

functional EPCs.  

Fibroblasts were successfully isolated from foreskin. 

This cell population was a homogenous population 

with 100% CD90-expressing cells. Indeed, CD90 

expression is considered a fibroblast marker 

(Kisselbach et al., 2009). Fibroblasts are common cells 

in the human body, and are especially easily to isolate 

and are very proliferative. Therefore, fibroblasts are 

the predominant cells used in the study as well as in 

applications of epigenetic reprogramming, including 

direct reprogramming. Indeed, fibroblasts are used to 

reprogram and induce pluripotent stem cells (Alawad 

et al., 2016; Takahashi and Yamanaka, 2006; Yu et al., 

2007), myoblasts (Choi et al., 1990; Davis et al., 1987; 

Lassar et al., 1989), adipocytes (Tontonoz et al., 1994), 

macrophages (Feng et al., 2008), cardiomyocytes (Efe 

et al., 2011), neuron (Yoo et al., 2011), myocytes 

(Bichsel et al., 2013), and endothelial progenitor cells 

(Li et al., 2013; Van Pham et al., 2016; Wong and 

Cooke, 2016). In this study, we used fibroblasts to 

directly induce reprogramming into EPCs.  

To date, there have been various approaches used 

different induction factors to direct reprogramming of 

fibroblasts into EPCs. For example, in the first study 

involving direct reprogramming of fibroblasts to 

EPCs, Margariti et al. used 4 factors, including OCT4, 

SOX2, KLF4, and c-MYC to induce fibroblasts for 4 

days. Then, differentiation of particle induced 

pluripotent stem cells into endothelial cells was done 

by treatment with defined media and culture 
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conditions (Margariti et al., 2012). Subsequently, Li et 

al investigated the removal of the Sox-2 gene and two 

other genes (Oct4 and Klf4), in combination with 

soluble factors (Li et al., 2013). Since the efficacy of 

these procedures was extremely low, Han et al. (2014) 

tried a combination of Foxo1, Er71, Klf2, Tal1, and 

Lmo2(Han et al., 2014). Recently, another factor for use 

as a single factor for direct reprogramming of 

fibroblasts to EPCs was suggested (Lee et al., 2014; 

Morita et al., 2015); single factor ETV2 was capable of 

inducing fibroblasts to acquire EPC phenotype. In 

2016, the efficacy of this procedure was increased by 

combining ETV2 transfection with hypoxia (Van 

Pham et al., 2016).  

In this study, we investigated a strategy similar to the 

one by Margariti et al. (Margariti et al., 2012). Initially, 

fibroblasts are induced to acquire partial pluripotency 

using 4 factors expressed in the first viral vectors 

(Oct3/4, Sox-2, Klf4 and c-Myc). Indeed, these factors 

could successfully reprogram many adult cells toward 

pluripotent stem cells. To improve on this strategy, we 

used another vector containing VEGFR2, a receptor 

for VEGF that has many roles. VEGF is critical 

signaling protein involved in both vasculogenesis and 

angiogenesis (Shibuya and Claesson-Welsh, 2006), and 

it serves as a mitogen for endothelial cells (Hoeben et 

al., 2004). It can also stimulate the migration of 

endothelial cells. Upregulation of VEGFR2 on 

fibroblasts enhances the effects of VEGF on both 

mitogenesis and migration.  

Thus, we investigated if partial pluripotent stem cells 

could be directly induced into EPCs by endothelial 

cell medium. The endothelial cell medium contains 

critical factors to direct induction of partial 

pluripotent stem cells into EPCs. For example, the 

medium contains low fetal bovine serum (2% as 

opposed to 10% used for fibroblasts), VEGF, 

hydrocortisone, and heparin. The low serum medium 

is not only suitable for endothelial cells but also can 

inhibit the proliferation of fibroblasts, particularly 

non-transduced fibroblasts. Hydrocortisone is an 

important factor in the endothelial cell medium, with 

an  important role of triggering endothelial cell 

differentiation, while inhibiting mesenchymal 

characteristics (Furihata et al., 2015). Heparin also has 

an essential role in endothelial cell growth; it is 

considered important in modulating the availability 

and stability of potent growth-regulating agents for 

endothelial cells (D'Amore, 1990). Moreover, heparin 

also protects vascular endothelial cells from injury 

induced by TNFα and sepsis; the protective 

mechanisms are related to effects of heparin on the 

histone methylation of promoter region and the 

regulation of heparin on the MAPK and NF-κB signal 

pathways (Ma and Bai, 2015). Heparin also binds to 

angiogenic growth factors and some pro-angiogenic 

receptors, as well as to angiogenic inhibitors which 

regulate angiogenesis (Chiodelli et al., 2015). Taken 

together, all the above factors can drive partial-

pluripotent stem cells toward to EPCs. The process 

and mechanism of direct reprogramming of 

fibroblasts into EPCs are proposed in Figure 7.  

Importantly, results from our study show that the 

process of reprogramming occurs and that it is 

feasible to produce functional endothelial progenitor 

cells. Although the efficacy of this process was low, a 

small population with markers of endothelial 

progenitor cells (CD31+VEGFR2+) could be produced. 

Moreover, these cells could perform in vitro functions 

of EPCs, such as blood vessel-like capillary formation. 

The properties of our EPCs are similar to ones of 

previously published studies (Lee et al., 2014; Morita 

et al., 2015; Van Pham et al., 2016).  

 

 

CONCLUSION 

EPCs can participate in both vasculogenesis and 

angiogenesis. Therefore, they can be used in treatment 

of ischemia-related diseases or blood vessel 

regeneration. However, the percentage of EPCs in 

blood and other tissues is extremely low. Our study 

demonstrated that EPCs could be feasibly produced 

by direct reprogramming of fibroblasts. Five factors 

were necessary in the cell medium: Oct3/4, Sox-2, Klf4, 

c-Myc and VRGFR2. Additionally, endothelial cell 

medium (containing low fetal bovine serum, 

hydrocortisone and heparin) was also critical for the 

induction. The EPCs expressed CD31 and VEGFR2, 

and formed blood vessel-like capillaries in vitro. These 

results suggest another strategy to directly reprogram 

fibroblasts into EPCs for potential use in regenerative 

medicine.  
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Figure 7. Epigenetic direct reprogramming of fibroblasts into endothelial progenitor cells. Fibroblasts are reprogrammed into 

partial pluripotent stem cells; these cells are then differentiated into endothelial progenitor cells after culture in endothelial cell 

medium with low fetal bovine serum, hydrocortisone and heparin.  
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