

ISSN: 2198-4093 www.bmrat.org

ORAL-POSTER Cancer Molecular Medicine: Targeting C-Myc and USP37 Interactions

Saadia Shakir, Mushtaq Hussain

Bioinformatics and Molecular Medicine Laboratory, Dow International Medical College Dow University of Health Sciences, Ojha Campus, Pakistan

Abstract

Background: C-Myc is master transcriptional regulator found to be dysregulated in variety of cancers. One major ubiquitin specific protease that regulate the turnover of C-Myc is USP₃₇. The present work aims to explore molecular interaction points between C-MYC and USP₃₇. Secondarily, a peptide disruptor is designed for this interaction.

Methods: A composite molecular model of USP₃₇ was generated by Modeller v9.17 using atomic coordinates of C19 domain of USP₄₆, pleckstrin domain and atomic coordinates of USP₃₇ generated using iterative threading modeling. After thermodynamic and structural refinement, finally selected model of USP₃₇ was docked against atomic coordinates of C-Myc (PDBid 5I4Z) under static and dynamic state. The disruptor peptide was designed de novo and based on the hotspots of interactions between USP₃₇ and C-Myc. Finally, the potential activity of disruptor peptide was assessed by undertaking molecular docking of peptide with USP₃₇.

Results: Structurally, USP₃₇ molecule resemble with a bowl shape where both C19 and pleckstrin domain were found in the central region. Near N-terminal the un annotated region was found to adopt structure homologous to the Zn finger. This denotes the possibility of USP₃₇ interaction with DNA alone or along with c-Myc. The interaction points of USP₃₇ and c-Myc lies at region which is exterior to both pleckstrin and C-19 domain. This binding interface contains both polar and no polar residues, taken this and sequence permutation into account a peptidyl disruptor is designed and docked against USP₃₇. Most docking simulation results in the congregation of designed peptidyl disruptor to the targeted spatial position on USP₃₇ molecule, suggesting its potential effectiveness.

Conclusion: The findings could be exploited in designing small molecular and peptidyl disruptor that could be used as a chemotherapeutic agent in cancers where C-Myc-USP₃₇ interactions plays an important role in pathogenesis.

Keywords

USPs, Myc, Cancer, CADD, Peptide Disruptor

Funding

Higher Education Comission, Govt of Pakistan

References

*For correspondence:

mushtaq.hussain@duhs.edu.pk

Competing interests: The authors declare that no competing interests exist.

Received: 2017-06-15 Accepted: 2017-08-13 Published: 2017-09-05

Copyright The Author(s) 2017. This article is published with open access by BioMedPress (BMP).

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.