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ABSTRACT
Exosomes are subcellular entities which were first discovered in the 1980s. Over the past decade,
scientists have discovered that they carry components of genetic information that allow for cell-cell
communication and cell targeting. Exosomes secreted by cancer cells are termed cancer-derived
exosomes (CDEs), andplay an important role in tumor formation andprogression. Specifically, CDEs
mediate the communication between cancer cells, as well as between cancer cells and other cells
in the tumor microenvironment, including cancer-associated fibroblasts, endothelial cells, mes-
enchymal stem cells, and effector immune cells. Additionally, through the vascular system and
body fluids, CDEs can modulate response to drugs, increase angiogenesis, stimulate proliferation,
promote invasion and metastasis, and facilitate escape from immune surveillance. This review will
discuss the relationship between cancer cells and other cells (particularly immune cells), as medi-
ated through CDEs, as well as the subsequent impact on tumorigenesis and immunomodulation.
Understanding the role of CDEs in tumorigenesis and immune cell modulation will help advance
their utilization in the diagnosis, prognosis, and treatment of cancer.
Key words: cancer, exosomes, extracellular vesicles, tumor microenvironment, tumorigenesis

INTRODUCTION
Exosomes are one of many subtypes of extracellu-
lar vesicles (EVs), along with microvesicles, apoptotic
bodies, ectosomes, and oncosomes, among others.
The diameter of exosomes ranges from 30 to 150 nm.
Exosomes are released, by almost every type of cell
(including normal and abnormal), into the extracellu-
lar space through the fusion between themulti-vesicle
bodies (MVBs) and the plasmamembrane 1. They can
be found in a wide variety of body fluids, including
blood, saliva, and breast milk. This indicates that one
of their potential functions is modulating physiologi-
cal responses 2.
In the 1980s, nano-sized vesicles were first discovered
in extracellular space and termed “exosomes”3. At
the time, exosomes were only known to carry cellular
waste (homeostasis by-products) and dispose them
to the extracellular space. Thus, they were not re-
garded as having any significant effects on other cells.
Over time, however, more discoveries on exosomes
emerged; they were no longer regarded as just cellu-
lar waste. Today, they are known to transport differ-
ent types of genetic and molecular cargoes (includ-
ing lipids, proteins, nucleic acids andmetabolites) be-
tween cells to facilitate communication and to impact
the function and behavior of recipient/target cells4.

Exosome biogenesis
The biogenesis of exosomes involves an initial inward
budding of the cell membrane to form early endo-
somes. The early endosomal membrane then invagi-
nates inwardly to form intraluminal vesicles (ILVs)
in the lumen. As the early endosomes mature into
late endosomes, this facilitates the formation of mul-
tivesicular bodies (MVBs). Next, MVBs are either
degraded when fusing with lysosomes or secreted
into the extracellular space through fusion with the
plasma membrane. Exosome biogenesis is modu-
lated by several pathways, including the endosomal
sorting complexes required for transport (ESCRT)-
dependent and ESCRT-independent pathways. The
ESCRT is comprised of four sub-complexes, which in-
clude ESCRT-0 to -III. The two signaling pathways
promote the maturation of endosomes and forma-
tion of MVBs, which are responsible for cargo sort-
ing. Exocytosis and secretion of exosomes require the
Rab-dependent trafficking pathways, which include
Rab11, Rab27, and Rab35. Also, other factors con-
tribute to ILV formation, including the p53/TSAP6
pathway, tetraspanin CD63, specific glycan modifica-
tion, and/or mechanisms that depend on lipids5–7.

Exosomal components
Exosomes are referred to as packages or envelopes
that mediate cell-to-cell communication. They facil-
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itate the communication between normal cells, be-
tween cancer cells, but also between cancer cells and
other cells in the tumor microenvironment (TME),
includingmesenchymal stem cells (MSCs), normal fi-
broblasts, and cancer-associated fibroblasts (CAFs).
Indeed, the signals emitted by cancer cells vary greatly
depending on the type of cells they interact with.
Cancer-derived exosomes (CDEs) contain genetic
and molecular components, in the form of mRNA
, miRNAs, proteins, lipids, metabolites, and nucleic
acids8. The cancer-derived exosomal components
may carry similar genetic information as the parental
cells but also may have their own characteristics, con-
tributing to the diversity in the tumor development
process. Thus, exosomes secreted from cancer cells
may carry and transmit components that reflect the
metabolic state and function of parental cells, butmay
also contain other components, including other EVs
like oncosomes9,10. Indeed, components in CDEs are
mostly responsible for mediating tumor growth11. A
regularly updated database of exosome components
can be found at this site (http://www.exocarta.org).

EXOSOMES IN CELL-CELL
COMMUNICATION
Communication between cells can sustain homeosta-
sis in the body but can also manifest in disease.
In addition to notable communication mechanisms,
including direct cell-cell interactions or uptake of
multiple extracellular signaling molecules (e.g. cy-
tokines, hormones, and growth factors), exosomes
have emerged as extracellular signaling molecules
critical for both inter- and intracellular communica-
tions2. Importantly, exosomes help to maintain the
body’s homeostasis, mediate cell signals, and modu-
late immune responses. However, they can also con-
tribute to the pathogenesis of diseases and disorders.
For instance, they can promote neurodegeneration in
neural disorders, as well as tumorigenesis, progres-
sion, and metastasis in cancer.
During cell-cell communication, exosomes from cells
can transport messages to various designated sites.
This process can be mediated by different proteins,
such as Rab protein and tetraspanin. CDEs are se-
creted by cancer cells and attach to nearby cells or
to the extracellular matrix (ECM), or can float along
the bloodstream and body fluids. When the exo-
somes reach their destinations, they can be taken up
by recipient cells through endocytosis, via fusion with
membrane or internalized by receptors6.

Effects of cancer-derived exosomes on var-
ious cells
As mentioned above, exosomes are secreted by many
types of cells, including cancer cells. CDEs carry a col-
lection of bioactivemolecules, such as lipids, proteins,
nucleic acids, and nucleic acid components (noncod-
ing RNA, mRNA, and DNA fragments). These com-
ponents participate in a variety of cellular activities,
including intracellular communication, chemother-
apy resistance, angiogenesis, modulation of TME, im-
mune reaction mediation, stimulation of cell inva-
sion, and metastasis. Specifically, CDEs affect can-
cer progression and metastasis in four different pro-
cesses: first, they promote angiogenesis for cancer
proliferation; second, they modulate cancer migra-
tion and invasion; third, they induce cancer cells to
escape immune system attack; and last, they prime
cancermetastasis via promoting the formation of pre-
metastatic niches12 (Figure 1).

Effects of CDEs on communication between
cancer cells
For cancer to progress, a crucial step is proliferation
of cancer cells, which is mediated mainly by solu-
ble growth factors. To facilitate proliferation, can-
cer cells must communicate with each other in the
TME through intricate signaling pathways which rely
on exosomes to carry and transmit bioactive signal-
ing molecules to adjacent and distant cells. Indeed, it
has been shown in several research studies that CDEs
are capable of promoting tumor proliferation and pro-
gression via these signaling mechanisms13. Accord-
ing to a study published in 2015 by Raimondo et al.,
exosomes released from chronic myeloid leukemia
(CML) can also induce an autocrine effect, promot-
ing the growth and survival of cancer cells.
Other examples of the role of CDEs in cancer prolif-
eration include exosomal CD97 from gastric cancer
(GC), which mediates cell proliferation and invasion
of GC cells by activating the mitogen-activated pro-
tein kinase (MAPK) pathway, and exosomal miRNAs,
which activate the CD97-associated pathway1. Fur-
thermore, exosomes derived fromGC activate several
pathways, including the PI3K/Akt and MAPK/ERK
(extracellular-regulated protein kinase), to promote
tumor proliferation14. In 2017, Pan et al. concluded
in their research that ZFAS1, a long non-coding RNA
(LncRNA), which can be found in GC-derived exo-
somes, was capable of promoting tumor proliferation
andmetastasis bymediating the cell cycle process and
epithelial-mesenchymal transition (EMT)15.
Another function of CDEs is they can regulate themi-
gratory status of cancer cells. Secreted CDEs can be
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taken up by adjacent cancer cells, and can act upon
those cells. For instance, exosomes secreted by hy-
poxic prostate cancer carry a larger number of pro-
teins, such as adherent junctionmolecules. The CDEs
rich in these kinds of proteins can potentially stim-
ulate invasiveness, stemness, and motility of naive
prostate cancer cells16.
Besides their involvement in tumorigenesis, CDEs
can also promote chemoresistance through cell-cell
communication of malignant cells. Docetaxel is a
chemotherapy medication that is used to treat several
types of cancers. In 2012, Corcoran et al. confirmed
after studying docetaxel resistance in prostate cancer
(PC) patients that CDEs derived from PC are partially
responsible for docetaxel resistance in secondary cells.
Moreover, in lung cancer, cisplatin resistance can be
transferred from donor cells to recipient cells by lung
cancer-derived exosomes that expressed a low level of
miR-100-5p; this led to mTOR being affected, thereby
impacting and regulating cellular reaction to cisplatin
in the recipient cells17.

Effect of CDEs on CAFs
Cancer-associated fibroblast cells (CAFs) are diverse
and heterogeneous18. It is thought that CAFs are
transformed by cancer cells to support the growth of
the cancer, in general, and to modulate tumor pro-
gression, in particular. CAFs make up the bulk of the
tumor, and they are capable of activating the F19+
positive fibroblast population in the malignant pro-
liferative fibroblast pool19. Studies showed that al-
tered p53 function in CAFs contributes to tumor pro-
gression20. Another study showed that IL-6 secreted
from CAFs depletes p53 through STAT3 in prostate
cancer cells21. Therefore, CAFs serve as a powerful
partner for cancer cells, enabling the latter to invade
and metastasize to many sites. For the sake of sim-
plicity, CAFs can originate from many different types
of cells, such as fibroblasts22, or from the transforma-
tion ofMSCs23, fat cells24, bonemarrow stem cells25.
They can migrate to the tumor to assist with immune
modulation, such as reducing inflammation by secret-
ing cytokines.
CAFs were originally normal fibroblasts but became
altered by cancer cells. In the TME, these cells ap-
pear to be transformed into cancer-associated- or tu-
mor growth-helper cells, changing their metabolic re-
programming to create high fuel sources like ketones
and lactates. These fuel tanks were then delivered to
cancer cells through monocarboxylate (MCT) trans-
porters or exosomes to support cancer cell prolifera-
tion26. These findings showed that cancer cells bene-
fit from both phenotypic heterogeneous features and

diverse metabolic patterns. A study on a breast can-
cer cell line showed that MiR-122 secreted from se-
cretory vesicles could facilitate reprogramming of glu-
cose metabolism and promote metastasis27. A study
of exosomes secreted from cancer cells showed stim-
ulation of fibroblasts into myofibroblast through tu-
mor growth factor (TGF)-β , thereby contributing to
tumor progression28. In another study, the increase
in LINC00355 expression of CAFs promoted the pro-
liferation and invasiveness of bladder cancer29. In a
study of ovarian cancer, it was found that exosomes
from ovarian cancer cells affected fibroblast cells of
tumor origin and cells adjacent to the tumor30. Ex-
osome secretion of CAFs also induced resistance in
a study of pancreatic carcinoma31. Resistance to ex-
osomes secreted by CAFs has also been observed in
a study of colorectal cancer (CRC)32. The interaction
between cancer cells andCAFs appears to promote tu-
mor progression in a variety of ways, of which com-
munication via exosomes is highly predominant.

Effects of CDEs in cancer cell-endothelial
cell communication
Endothelial cells (ECs) play many roles in the regula-
tion of homeostasis. First, they manage the passage of
nutrients and oxygen; second, they represent a variety
of trophic factors; and third, they dispose metabolic
by-products. Cancer cells, similar to normal cells, also
need nutrients, oxygen, and growth factors to sur-
vive, proliferate, and metastasize. On this basis, ex-
osomes are considered to be important in the com-
munication between cancer cells and ECs 13,33. For
instance, exosomes derived fromCML (LAMA84) af-
fect the signal transduction pathways in ECs and ac-
tivate angiogenesis through the release of IL-834. Ac-
cording toThompson et al., in a 2013 study, when the
expression of enzyme heparanase in human cancer
cells (e.g. breast cancer and myeloma) was increased,
the secretion of exosomes was also increased. In cells
with higher expression of heparanase, the exosomes
also carried higher levels of syndecan-1, hepatocyte
growth factor, and vascular endothelial growth fac-
tor (VEGF), which promoted tumor migration on fi-
bronectin and EC invasion through the ECM 35. An-
other example is angiogenesis promotion in epithelial
ovarian cancer (EOC) cells via metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1)-rich
exosomes. EOC-derived exosomes transfer MALAT1
to human umbilical vein ECs (HUVECs), activating
the expression of the angiogenesis-related gene and
eventually promoting angiogenesis36.
CDEs can also promote cancer metastasis by affect-
ing vascular integrity13. For example, in ECs, CDEs

4161



Biomedical Research and Therapy, 7(12):4158-4169

which carry the miR-105 cause destruction on the
tight junction and destroy the integrity of the vascu-
lar barriers against metastasis. Moreover, miR-105
overexpression in non-metastatic cancer cells pro-
motes metastasis and causes blood vessels in distant
organs to become more permeable37. Glioblastoma
multiforme (GBM)-derived exosomes enriched with
VEGF-A promote angiogenesis and the permeable
potential of human brain ECs in vitro38. In addi-
tion, exosomes that are secreted from cancer cells un-
der hypoxic conditions can play dual roles in both
tumor progression and metastasis39. In ex vivo and
in vitro settings, GBM-derived exosomes developed
under hypoxic conditions (in comparison with nor-
moxic conditions) promote angiogenesis by pheno-
typic alteration of ECs. Moreover, in the same set-
tings, ECs were primed to release multiple growth
factors and cytokines, to activate late pericytes via
PI3K/AKT, and to promote migration40. In CRC, ex-
osomes secreted under hypoxic conditions stimulated
ECs to proliferate andmigrate. Furthermore, hypoxic
CRC-derived exosomes loaded with Wnt4 were able
to augment β -catenin nuclear translocation signals in
ECs, prompting the ECs to proliferate and migrate41.

Effects of exosomes from MSCs on cancer
cells
The potential of MSCs for use in the treatment of a
wide variety of diseases is highly attractive and, thus,
has garnered great interest from scientists42–46. The
interaction between cancer cells and MSCs is also of
particular interest to many researchers, whether the
interaction is mediated by MSC-derived exosomes
acting on cancer cells or by CDEs acting on MSCs.
Many studies show that exosomes secreted fromMSC
promote tumor growth 47,48. However, there is also
research which suggests that exosomes secreted from
MSC do not promote the proliferation of cancer cells
in vitro, but are more prominent in their regenerative
ability 49. Another study in mouth squamous cell car-
cinoma showed that exosomes from stem cells help
inhibit angiogenesis and tumors50. Also, a study on
HepG2 liver cancer cell line showed that exosomes
from bone marrow MSCs inhibited tumor growth
both in vitro and in viv o51. Exosomes from adi-
pose MSCs also inhibited the proliferation of hepa-
tocellular carcinoma (HCC) in mice 52. Alzahrani et
al. (2018) showed that exosomes from cancer stem
cells (CSCs) induce and promote tumor progression
in HCC while MSC-secreted exosomes have an in-
hibitory effect53. Indeed, the diversity of exosomes
in many different cell lines has led researchers to fur-
ther investigate the possible use of exosomes in cancer
treatment.

CDEs in cancer cell-immune cell communi-
cation
According to the hallmarks of cancer, malignant cells
can devise multiple ways to avoid being destroyed by
the different arms of the immune system54. In order
to survive and proliferate, tumors need to avoid being
detected by either inhibiting antigen-presenting cells
(APCs) or cytotoxic T lymphocyte (CTL) function,
or enhancing immune suppressor cells to potentially
shut down the immune system. Besides immunosup-
pression, the immune system can be reversely mod-
ulated to assist in the development and survival of
cancer cells. CDEs contribute to each of these strate-
gies, via proteins on their surface, or nucleic acids,
or intra-vesicle cytokines55. CDEs prevent the im-
mune system from performing its antitumor activ-
ities. They do so by interfering with the differen-
tiation and activation of immune suppressor genes,
obstructing immune cell proliferation, altering anti-
gen presentation, promoting activated T-cell apopto-
sis, reducing the activity of natural killer (NK) 56 cells,
and affecting monocyte differentiation57. CDEs also
hamper with the immune surveillance of the host by
elevating signals released by tumor cells; these signals
include inflammation, tumorigenesis, and immune
escape of cancer cells. Moreover, CDEs can modu-
late immune responses by outsmarting stromal and
immune cells. Thus, eventually, CDEs act as crucial
contributors in regulating immunoediting not only at
primary tumor sites but also at secondary sites13.

Monocytes
Monocyte account for 5% of circulating leukocytes
(white blood cells) in most mammalian species 58.
Monocytes are sensitive to changes in the environ-
ment which make them plastic and heterogeneous.
They are able to alter their functional phenotype with
regards to different stimuli in the environment, such
as growth factors, cytokines, and microbial prod-
ucts. Moreover, they can differentiate into either
macrophages or dendritic cells. Therefore, they are
crucial for both innate and adaptive immune re-
sponses59–61. Initially, the immune system was only
known for its ability to protect the human body from
infections and cancer development, via mechanisms
like immune surveillance. However, recent studies
have demonstrated that some unresolved immune ac-
tivities, such as chronic inflammation, can induce
cancer progression and metastasis62,63. Moreover,
tumor cells and their TME can secrete molecules that
affect monocytes in different ways, including impact-
ing their function, migration, recruitment, and dif-
ferentiation31. For instance, chronic lymphocytic
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leukemia (CLL)-derived exosomes were taken up by
monocytes, which then activated the expression of
programmed death-ligand 1 (PD-L1), a molecule that
can suppress the immune responses and trigger the
redirection of both monocytes and macrophages to-
wards pro-tumorigenic phenotypes. Moreover, this
triggered the release of cytokines, including C-C mo-
tif chemokine ligand (CCL)-2, CCL-4, and inter-
leukin (IL)-6, which in turn stimulated nuclear factor-
kB (NF-kB) activity56. Additionally, NF-kB is com-
monly known for its contribution to immune activa-
tion and inflammation. However, data suggest that
constitutively stimulated NF-kB is involved in tu-
morigenesis by promoting cancer proliferation, an-
giogenesis, and metastasis, while inhibiting apopto-
sis64. Exosomes derived from malignant ascites of
ovarian cancer cells were examined for their ability to
regulate monocytic biological functions. The CDEs
were taken up by THP-1 monocytic cells via cell sur-
face receptors, Toll-like receptor (TLR)-2 and TLR-
4, which then triggered the production of multiple
cytokines, including IL-1B, IL-6, and tumor necrosis
factor (TNF)-a, and also activated NF-kB. Moreover,
CDEs can also activate the signal transducer and ac-
tivator of transcription 3 (STAT3) pathways via the
release of IL-6 in an autocrine/paracrine manner65.
Furthermore, activated NF-kB and STAT3 interact
with each other to modulate communication between
tumor cells and the TME, which consists of inflam-
matory cells from the immune system that respond to
the cancer cells. Therefore, NF-kB and STAT3, when
combined, play important roles in the regulation of
cytokines to induce tumorigenesis, and regulate an-
giogenesis, metastasis, and cancer cell apoptosis66.

Macrophages
Macrophages have specialized functions in the im-
mune system, with the main function being to
recognize, engulf, and destroy foreign or harmful
factors, such as bacteria and pathogens. More-
over, macrophages can also present antigens to T
cells or promote inflammation through the release
of molecules, which then activate the immune re-
sponses. One of special features of macrophages is
that they can be phenotypically-polarized, depend-
ing on specific requirements from the environment.
They can be polarized into two main subtypes: clas-
sical activation (M1 cells) or alternative activation
(M2 cells)67. The activation of both M1 and M2
macrophages could potentially achieve opposite out-
comes. The activation of M1 macrophages increas-
ingly produces pro-inflammatory molecules, such as

cytokines and chemokines, which induce the elim-
ination of foreign factors and infections. Activated
M2 macrophages release anti-inflammatory signals
and induce tumor progression, promote angiogen-
esis, and heal wounds. Several studies had shown
that exosomes participate in the communication be-
tween cancer cells and tumor-associatedmacrophages
(TAMs), thereby modulating how these macrophages
are polarized and will function68. For example, in
CRC, CDEs play an important and active role in de-
termining that themacrophages will be polarized into
a more cancer-favorable, i.e. pro-tumorigenic pheno-
type, by utilizing the cytoskeleton-centric proteins as
a functional unit69. Breast CDEs can induce a pro-
inflammatory response in M1 macrophages by acti-
vating NF-kB signaling which leads to the production
of inflammatory cytokines in monocytes. Moreover,
only exosomes secreted by cancer cell lines can stim-
ulate macrophages. TLR-2 interacts with proteins on
the CDE surface to induce an inflammatory response
by the stimulated macrophages. Also, the communi-
cation between breast CDEs and macrophages, com-
bined with the existence of TLR-2 on macrophages
and palmitoylated protein ligands on CDEs, can ac-
tivate NF-kB70.

Dendritic cells (DCs)
Dendritic cells (DCs) serve as antigen-presenting cells
(APCs) in the immune system, and play pivotal roles
in the primary immune activation. DCs are impor-
tant to both innate and adaptive immunity since they
can communicate with and regulate the responses of
innate immune cells. Moreover, DCs are considered
to be professional APCs because they are the only
APCs that can initiate the response of naive T lym-
phocytes, which makes them crucial to the acquired
immune stimulation71. Since DCs contribute sig-
nificantly to the immune defense mechanisms, can-
cer cells have interfered with DC formation, migra-
tion, and function. Moreover, cancer cells also en-
hance the production of immature DCs, and these
cells potentially become immune suppressors72. In
2007, Yu et al. concluded that CDEs are immune sup-
pressive through the inhibition of DC differentiation.
In murine models, CD11+ myeloid precursor cells in
bone marrow interact with CDEs in vitro and stimu-
late the secretion of IL-6, which then partially stops
these precursor cells from differentiating into DCs.
Moreover, in the human breast cancer cell line MDA-
MB-231, CDEs were also shown to obstruct DC dif-
ferentiation. These examples demonstrate that the in-
hibition of DC differentiation by CDEs contributes
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greatly to the immune escape of cancer cells73. CDEs
can downregulate TLR-4 expression by transporting
miR-203 to DCs, subsequently decreasing the pro-
duction of TNF-α and IL-12, and suppressing DC-
induced immune responses 37.

Myeloid-derived suppressor cells (MDSCs)
Myeloid cells (or myelocytes) originate in the bone
marrow and are comprised of different types of im-
mune cells, such as mononuclear myelocytes (mono-
cytes, macrophages, and dendritic cells) and granulo-
cytic myelocytes (neutrophils, eosinophils, basophils,
and mast cells). Myeloid cells are generated in re-
sponse to stimuli from pathogenic factors and create
a defense barrier to protect the host from infections.
During tumor growth, myelocytes are differenti-
ated into myeloid-derived suppressor cells (MDSCs),
which contribute significantly to cancer progression
by inducing cancer survival, promoting angiogenesis,
promoting invasion of healthy cells, and promoting
metastasis of cancer cells; thus, MDSCs are impor-
tant contributors in the TME74,75. Cancer-derived
exosomes, when internalized by myeloid cells, can in-
duce these cells to alter their differentiation pathway
to MDSCs (CD11b+Gr-1+). The differentiated cells
carry traits and functions of MDSCs, such as induc-
tion of tumor progression. Moreover, in vivoMDSCs
can induce tumor development via CDEs enriched
with prostaglandin E2 (PGE2) and TGF-β . Both
PGE2 and TGF-β aremolecules that can suppress im-
mune responses and promote angiogenesis by trigger-
ing the production of several pro-inflammatory cy-
tokines, such as Cox 2 and IL-6. Moreover, these
two molecules also produce and elevate the activity
of VEGF, which in turn induce tumor migration and
metastasis in the late stages of cancer76.
In addition, MDSCs internalized CDEs that are en-
riched with proteins Hsp70 and Hsp72, and then
trigger an autocrine release of pro-inflammatory cy-
tokine IL-6, thereby stimulating the phosphorylation
of STAT3 in a TL2/MyD88-dependent fashion and
facilitating expansion of MDSCs. This subsequently
suppresses immune surveillance and anti-tumor im-
munity 77,78.
On the other hand, many studies have shown that
exosomes secreted from cancer cells suppress the
immunity of immune cells, such as T cells and
macrophage cells68,79. They can also turn into tumor-
associated macrophages (TAM), which facilitate ac-
celerated metastasis80–82. Cancer cells attack im-
mune cells with exosomes carrying PDL-1 to T cells
via PD-1 receptors83. The immunosuppressive ca-
pacity of melanoma-derived exosomes has also been

noted84. Exosomes secreted from gastric cancer cells
alter the cycle of T CD8 cells and alter gene expres-
sion of specific T CD8 to increase expression of im-
munosuppressive genes such as FOXP3 and IL-1085.
Exosomes expressing miR-940 secreted from ovarian
carcinoma cells induce macrophages to switch to the
TAM phenotype80. TAMs were also expressed af-
ter interacting with exosomes secreted from glioblas-
toma (GBM)-derived stem cells (GSCs) 86. Exosome
RPPH1 secreted from CRC also promotes the TAM
phenotype to promote metastasis and CRC cell pro-
liferation81. It can be seen that in a variety of ways
exosomes derived from cancer cells can induce im-
mune cells to help them spread faster. Through the
exosomes, they can also rapidly destroy and inhibit
immune cells throughmarkers such as PD-1, CTLA4.
The targeting and blocking of biological markers on
these exosomes to treat cancer has been and is being
studied by many immunological studies.

APPLICATIONOF CANCER-DERIVED
EXOSOMES (CDES)
Exosomes derived from cancer cells promote can-
cer development at different stages by transporting
certain bioactive molecules that can induce changes
in the TME to influence nearby cells or cells at dis-
tant sites. Since CDEs participate in the interaction
between cancer and non-cancer cells, and they also
possess some traits from the parental cells, this sug-
gests that CDEs can potentially be used as biomarkers
for cancer diagnosis, prognosis, and therapy87. Be-
sides, it has been shown that CDEs can assist cancer
cells to avoid attack from the immune system, and
can contribute to therapeutic resistance in cancer pa-
tients88. Thus, an in-depth understanding of these
mechanisms could equip us with information on how
to improve cancer therapies. Still, the greatest ad-
vantage of CDEs in clinical applications is the utiliza-
tion of their membrane structures, which are simi-
lar to other cells in the body, to transport anti-cancer
drugs; thus, they have promising potential to be effi-
cient cancer-targeted drug delivery vehicles2.

CDEs as potential biomarkers for diagnosis
and prognosis
It has been shown that the contents of CDEs are sim-
ilar, sometimes identical, to the intracellular condi-
tions of their parental cells. Therefore, it was sug-
gested that real-time observation of alterations inside
CDEs could provide pertinent information about can-
cer cells. Moreover, since exosomes circulate within
body fluids, they can be considered as liquid biopsies,
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which have been proven to be more convenient com-
pared to tissue biopsies as they are less invasive, eas-
ily collected, fast, and more economical2. Biomark-
ers are biological indicators, usually in the form of a
protein or protein fragment, that can be recognized in
the patient’s fluids (blood or urine), but not in healthy
individuals89. Biomarkers are commonly used in de-
tecting early stages of diseases or recurring diseases
and assessing patient survival and recovery possibili-
ties. Early detection of cancer could improve the odds
of successful treatment and subsequently, elevate the
patient’s chances of survival. Thus, CDEs could po-
tentially serve as biomarkers in cancer diagnosis, as
well as providing information to guide cancer prog-
nosis and monitoring.
The role of exosomes in cancer treatment is undeni-
ably important. Yet, many areas remain to be inves-
tigated, such as the optimal conditions in which ex-
osomes should be stored. In 2013, exosomes derived
from blood plasma were assessed for their ability to
remain stable under different storage conditions. Af-
ter 90 days, the exosomes were analyzed via Western
blot using TSG101, a marker for exosomes. It was
demonstrated that the stability of the exosomes was
still intact. Furthermore, the exosomes were still able
to be internalized by the target cells, indicating that
they were still active in the biological sense 90. One
important consideration is that plasma collected from
cancer patients tends to produce more isolated exo-
somes than those from healthy subjects. Moreover,
exosomes from cancer patients can strongly induce
immune suppression, as was shown by the downreg-
ulation of CD69 expression on CD4+ T effector lym-
phocytes91.
As mentioned above, CDEs can create a suitable TME
to promote cancer metastasis, via stimulation of spe-
cific patterns of metastasis. Moreover, CDEs carry
certain integrins that can regulate cancer metasta-
sis by directing the cancer cells to specific destina-
tions. For instance, CDEs that carry integrin ITGα6-
β4 and ITGα6-β1 can connect with lung fibrob-
lasts and epithelial cells, leading to lung tropism;
these cancer cells may prefer to metastasize to the
lung. Meanwhile, CDEs enriched with ITGαv-β5
can adhere to Kupffer cells and skew metastasis to
the liver. This phenomenon demonstrated that inte-
grins, which are considered to be the first bioactive
molecules, can forecast which specific organs the can-
cer cells might metastasize to. Therefore, CDEs en-
riched with integrins could potentially be biomark-
ers for cancer organotropism92. In addition, exo-
somes derived from advanced melanoma have been
found to transport proteins that are considered to

have a “melanoma signature”, such as tyrosinase-
related protein-2 (TYRP2), very late antigen-4 (VLA-
4), MET, HSP70, and HSP90 isoform. This signature
can dictate the site of metastasis. Not only that, in-
creased levels of exosomal TYRP2 and MET, com-
bined with increased levels of other proteins in the
exosomes, can also indicate cancer progression93. In
head and neck squamous cell carcinomas (HNSCC),
the overexpression of CD44v3, a protein that is asso-
ciated with tumor and is transported by CDEs, can
indicate the status of HNSCC, including tumor pro-
gression andmetastasis. Additionally, CDEs enriched
with CD44v3 can suppress immune responses and act
as an indicator of advanced disease stage and lymph
node metastasis. Therefore, CD44v3(+) CDEs can
serve as a biomarker in the diagnosis and prognosis
of HNSCC94.

CDEs as vehicles of drug therapy
Based on the current understanding of exosome , sev-
eral studies have developed cancer screening diagnos-
tics using signature markers of exosomes. Exosomal
RPPH1 has been suggested as a diagnostic biomarker
of CRC81. Glypican-1 (GPC1) in exosome secreted
from pancreatic cancer cells can also be used in di-
agnosis95. Additionally, exosomes have been used in
diagnosing non-small cell lung cancer (NSCLC)96.
A major advantage of exosomes is that cancer screen-
ing and diagnosis can be tested using only blood or
urine, as opposed to tumor biopsies. Given the small
size of exosomes, many researchers have focused on
their use as a nanoscale targeted drug delivery system
(of small molecular drugs) for the treatment of many
diseases, including cancer, to promote long-term ef-
fects.

CONCLUSION AND PERSPECTIVE
In conclusion, exosomes are carriers that transport
varied types of constituents from one cell to another,
inducing target cells to alter in phenotype and func-
tion. Exosomes play a pivotal role in facilitating cell-
cell communication. Indeed, they are found in most
cell types, including cancer cells. When cancer cells
interact with other cancer cells, via CDEs, this can
cause cancer cells to promote a more tumorigenic en-
vironment. Thus, CDEs can change the TME, sup-
port MET and EMT processes, stimulate cancer pro-
gression, and augment metastasis. Research stud-
ies on CDEs have demonstrated that CDEs, due to
unique cargoes they transport, can potentially serve as
biomarkers in cancer diagnosis and prognosis. More-
over, CDEs can play a pivotal role in cancer therapy
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since they can be curated to specifically target can-
cer cells through cell signaling. The use of exosomes
to deliver drugs for cancer therapy can be less inva-
sive andmore physiologically relevant since they have
similar structures with other cells in the TME. More
extensive studies on exosomes are needed, such as fur-
ther investigations into the mechanisms of transport
and cell-cell communicationmediated byCDEs. Nev-
ertheless, a greater understanding of exosomes will
provide greater insight and perspective on how to op-
timize the use of CDEs to treat different types of can-
cer.
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