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Abstract— Umbilical cord blood (UCB) is considered to be a source of hematopoietic stem cells (HSCs). All UCB 
banks have recently become interested in the isolation and storage of HSCs for the treatment of hematological diseases. 
However, UCB was also recently confirmed as a source of immune cells for immunotherapy such as dendritic cells 
(DCs) and cytokine-induced killer cells (CIKs). This study aimed to exploit this source of immune cells in banked UCB 
samples. After collection of UCB samples, mononuclear cells (MNCs) containing stem cells, progenitor cells, and ma-
ture cells were isolated by Ficoll-Hypaque-based centrifugation. The MNCs were subjected to freezing and thawing ac-
cording to a previously published protocol. The banked MNCs were used to produce DCs and CIKs. To produce DCs, 
MNCs were induced in RPMI 1640 medium supplemented with GM-CSF (50 ng/ml) and IL-4 (40 ng/ml) for 14 days. 
To produce CIKs, MNCs were induced in RPMI 1640 medium supplemented an anti-CD3 monoclonal antibody, IL-3, 
and GMC-SF for 21–28 days. Both DCs and CIKs were evaluated for their phenotypes and functions according to pre-
viously published protocols. The results showed that banked UCB samples can be successfully used to produce functional 
DCs and CIKs. These samples are valuable sources of immune cells for immunotherapy. The present results suggest that 
banked UCB samples are useful not only for stem cell isolation, but also for immune cell production.  
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INTRODUCTION 

Umbilical cord blood (UCB) is considered to be a 

source of stem cells, especially hematopoietic stem 

cells (HSCs). Transplantation of UCB-derived HSCs in 

the treatment of hematological diseases has been per-

formed for a long time. The first cord blood (CB) 

transplantation was performed in 1988 in a patient 

with Fanconi anemia (Gluckman et al., 1989). Banked 

UCB samples have also been used to treat refractory 

leukemia at Duke University Medical Center since 

1993 (Kurtzberg et al., 1996). 

In recent years, many UCB banks have been estab-

lished around the world. The Netcord group was 

created in 1998 to establish good practices in UCB sto-

rage. The inventory of the Netcord group, a coopera-

tive network of large experienced UCB banks, current-

ly contains more than 200 000 cryopreserved UCB 

units ready for clinicaluse (Gluckman, 2009). Howev-

er, the usage efficiency of these banks is very low. In 

fact, some private banks only use UCB samples for the 

donors, while some public banks are faced with seek-

ing HLA-matched samples. For these reasons, some 

studies and banks have exploited other kinds of stem 

cells in banked UCB samples. Recently, mesenchymal 

stem cells (MSCs) were successfully isolated from 

banked UCBs (Phuc et al., 2012; Phuc et al., 2011).  

Fresh UCB samples have been used to produce certain 

kinds of immune cells for treatment, especially den-

dritic cells (DCs) (Kim et al., 2015; Liu et al., 2015; Park 

et al., 2015) and cytokine-induced killer cells (CIKs) 

(Durrieu et al., 2013; Niu et al., 2011; Zhang et al., 

2014). The authors isolated DCs from fresh UCB sam-

ples. These DCs clearly exhibited the particular DC 

phenotypes. The above studies showed that fresh UCB 

samples comprise a useful source of DCs for clinical 
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applications. Moreover, some recent publications have 

shown that mononuclear cells (MNCs) from UCB 

samples can differentiate into functional CIKs 

(Durrieu et al., 2013; Niu et al., 2011; Zhang et al., 

2014). These CIKs acted as natural killer (NK) cells 

both in vitro and in vivo (Dalle et al., 2005; Fan et al., 

2008; Verneris and Miller, 2009). Furthermore, UCB-

derived NK cells express less granzyme and are thus 

less cytotoxic than peripheral blood-derived NK cells 

(Wang et al., 2007). These cells were successfully used 

in certain treatments, such as relapse of acute myeloid 

leukemia after HLA-mismatched haploidentical stem 

cell transplantation (Hanley et al., 2010; Ruggeri et al., 

2007), esophageal cancer (Wang et al., 2014), hepato-

cellular carcinoma, renal cell carcinoma, and lung can-

cer (NCT01914263).  

To increase the usage efficiency of banked UCB sam-

ples, this study aimed to produce DCs and CIKs from 

banked UCB samples for immunotherapy. Both DCs 

and CIKs were produced from UCB-derived MNCs 

and tested for their phenotypes and in vitro activities.  

 

 

MATERIALS AND METHODS 

UCB collection and MNC isolation 

Umbilical cord blood was collected from a healthy 

pregnant woman with agreement among the hospital, 

donor, and laboratory. After the woman gave birth, 

blood was taken from the fetal cord and treated with 

the anticoagulant CDPA (Terumo, Japan).  

To isolate MNCs, each UCB unit was diluted with 

phosphate-buffered saline (PBS) at a ratio of 1:1, and 

10 ml of the diluted blood was gently loaded onto 25 

ml of Ficoll-Hypaque solution (1.077 g/ml; Sigma–

Aldrich, St Louis, MO) in a 50-ml tube. After centrifu-

gation at 2,500 rpm for 5 min, MNCs were derived 

from the interphase layer (above the Ficoll-Hypaque 

layer), and washed twice with PBS.  

MNC banking and thawing 

The isolated MNCs were resuspended in IMDM 

cryomedium (Sigma–Aldrich) supplemented with 

10% DMSO (Sigma–Aldrich) and 20% fetal bovine se-

rum (FBS) at the density of 107–108 cells/ml. The sam-

ple was transferred to a controlled-rate freezer pre-

cooled to 0°C, and sequentially cooled at 1°C/min to 

−12°C, cooled at 20°C/min to −60°C, warmed at 

15°C/min to −18°C, cooled at 1°C/min to −60°C, and 

cooled at 3°C/min to −100°C. After completion of the 

freezing protocol, the units were stored in liquid ni-

trogen.  

The sample was rapidly thawed by embedding the 

cryotube in a 37°C water bath until it was completely 

liquefied. Immediately afterward, 1 ml of IMDM with 

20% FBS and 1% antibiotic/mycotic solution was 

dropped into the tube. The cell suspension was then 

transferred to a new 15-ml tube, and centrifuged at 

2,500 rpm for 5 min to eliminate the DMSO. The cell 

pellet was resuspended in culture medium (IMDM 

plus 20% FBS and 1% antibiotic/mycotic solution) for 

use in further experiments.  

DC production and characterization  

MNCs were cultured in IMDM medium supple-

mented with 10% FBS at 37°C for 2–3 h. The adherent 

cells were cultured to allow their differentiation into 

DCs according to the following procedures. MNCs 

were cultured for 9 days in RPMI 1640 medium (Ros-

well Park Memorial Institute) containing 40 ng/ml in-

terleukin (IL)-4, 50 ng/ml GM-CSF (Santa Cruz Bio-

technology, Santa Cruz, CA), and 10% FBS. Fresh me-

dium with added cytokines was additionally provided 

after a 3-day interval to provide nutrients.  

Before and after induction, surface markers of DCs 

were analyzed by flow cytometry to determine 

whether DCs were successfully differentiated. Specific 

primary antibodies were used, such as those against 

CD14, CD1a, CD80, and CD83 (Santa Cruz Biotech-

nology). DCs were incubated in 100 μl of PBS contain-

ing 5 μl of each monoclonal antibody for 20 min in the 

dark at room temperature. The cells were then washed 

three times in PBS and analyzed using FACS flow cy-

tometry (FACSCalibur; Becton Dickinson, Heidelberg, 

Germany) and Cell Quest software.  

CIK production and characterization  

Generation of CIKs  

MNCs were cultured in serum-free X-VIVO-15 me-

dium (BioWhittaker, Walkersville, MD) with 1000 

U/ml of IFN-γ (Gammakine; Boehringer Ingelheim, 

Vienna, Austria) added on day 0, 50 ng/ml of anti-CD3 

antibody (OKT-3; Janssen-Cilag SpA, Milan, Italy) 

added on day 1, and 500 U/ml of rhIL-2 included in 

the medium from day 1 onward. Cell expansion was 

performed for 21–28 days.  

CIK phenotype analysis 

CIKs were characterized using FITC-conjugated anti-

CD3 (SK7 clone) and PE-conjugated anti-CD56 

(NCAM16.2 clone) monoclonal antibodies (mAbs) 
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(Becton Dickinson). To analyze the expression of acti-

vating receptors on CIKs, the following mAbs were 

used: anti-NKG2D (BAT221 clone) and anti-NKp30 

(A76 clone).  

For indirect immunofluorescence staining, cells were 

incubated with the primary mAbs, followed by PE-

conjugated goat anti-mouse IgG1 (Invitrogen, Paisley, 

UK) or FITC-conjugated goat anti-mouse Ig (Becton 

Dickinson) secondary antibodies. A FACSCalibur flow 

cytometer (Becton Dickinson) was used to analyze the 

samples.  

Cell conjugation assay  

The target cells (MCF7) were washed, resuspended in 

1 ml of PBS supplemented with 1% bovine serum al-

bumin at a final concentration of 5 × 106 cells/ml, and 

labeled with the green fluorescent dye carboxyfluo-

rescein succinimidyl ester (CFSE; 2 μM; Sigma–

Aldrich) for 10 min at 37°C. Quench-staining was per-

formed on ice for 5 min by adding 5 volumes of ice-

cold complete RPMI. The cells were then washed three 

times with ice-cold PBS containing 1% bovine serum 

albumin and cultured under appropriate conditions.  

For PKH26 staining of CIKs, 10 × 106 cells were 

washed in PBS and the cell pellet was resuspended in 

500 μL of diluent C (Sigma–Aldrich). The lipophilic 

red fluorescent dye PKH26 (Sigma-Aldrich) was di-

luted at a final concentration of 4 μM in 500 μl of dilu-

ent C, rapidly added to the cells, and incubated for 5 

min at room temperature with occasional agitation. 

Next, 1 ml of FBS was added and incubated for 1 min 

at room temperature. The cells were then washed 

three times in complete culture medium.  

A total of 5 × 105 PKH26-labeled CIKs and 5 × 105 

CFSE-labeled target cells were resuspended in 200 μl 

of complete medium containing or lacking 1 mM ethy-

lenediaminetetraacetic acid (EDTA; Sigma–Aldrich) 

and mixed in a 12-mm × 75-mm polystyrene tube (Bec-

ton Dickinson Labware, Franklin Lakes, NJ). The effec-

tor-target cell mixture was centrifuged at 1,000 rpm 

for 1 min and incubated at 37°C for specified time pe-

riods (5 min and 15 min). The cells were then gently 

resuspended and analyzed by flow cytometry.  

Calcein release cytotoxicity assay  

The target cells (MCF7, PC3, and HepG2) were labeled 

with 3.5 μM calcein-acetoxymethyl ester (calcein-AM; 

Sigma–Aldrich) for 30 min at 37°C. The labeled cells 

were then added to 96-well plates at 5 × 103 cells/well. 

CIKs were added at different effector-to-target (E:T) 

ratios. In control samples, the cytotoxicity assay was 

performed in the presence of 1 mM EDTA. After 4 h, 

the cells were sedimented by centrifugation. Next, 100 

μl of supernatant was collected and determined for 

calcein release using a fluorescence microplate reader 

with excitation at 485 nm and emission at 535 nm. The 

percentage of specific calcein release was calculated 

using the following formula: percent specific lysis = 

(test release minus spontaneous release) × 100 / (max-

imal release minus spontaneous release). Maximal 

lysis was achieved with 1% Triton X-100.  

 

 

RESULTS 

High percentage of viable cells after thawing 

Ten banked UCB samples were thawed and used for 

induction of DCs and CIKs. Before use, all thawed 

samples were tested for the percentage of viable cells. 

The results showed that there were 91.5  4.56% viable 

cells in all thawed samples. Each sample was divided 

into two parts, half for DC induction and half for CIK 

induction. 

 

Banked UCBs successfully produce functional DCs 

Induced cells exhibit the DC phenotype 

Thawed UCB-derived MNCs successfully exhibited 

the DC phenotype. In the adherent culture after 14 

days of induction, the cells expressed a similar shape 

to DCs with many dendrites (Fig. 1). Regarding sur-

face marker expression, the cells expressed DC mark-

ers, including CD83 (35.27 ± 18.7%), CD1a (18.9 ± 

7.1%), and CD80 (25.88 ± 11.01%), while CD14 was not 

expressed in CD1a+ cells. 

 

 

Figure 1. Banked MNCs were successfully induced into dendrit-
ic cells. MNCs were thawed from cryoprecryopreserved samples (A), 
were induced into dendritic cells after 7 days (B) and 14 days (C, D).  
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DC candidates can phagocytose FITC-dextran 

Phagocytosis is a property of DCs. In this assay, DCs 

were induced in FITC-dextran-supplemented culture 

medium. The results revealed that the induced DCs 

efficiently phagocytosed the FITC-dextran. Compared 

with control cells incubated at 4°C, up to 42.6 ±9.5% of 

DCs incubated at 37°C could phagocytose FITC-

dextran. Meanwhile, at this temperature, about 

8.7±24.5% of cells could phagocytose this dextran (Fig. 

2). 

 

 

Figure 2. Flow cytometry analysis of DC phagocytosis using 
FITC-dextran. The induced DCs phagocytose the FITC-dextran com-
pared with control cells.  

 

DC candidates stimulate allogenic T cells 

The induced DCs were mixed with allogenic T cells to 

evaluate the stimulatory potential of the DCs. The re-

sults are shown in Fig. 3. The DCs effectively stimu-

lated the T-cell proliferation in a manner dependent 

on the ratio of DCs to T cells. The ratio of 1 DC to 10 T 

cells exhibited the highest stimulating efficacy, and the 

capacity gradually decreased as the ratio of DCs to T 

cells decreased. All results were significant compared 

with the control cells.  

 

 

Figure 3. DC candidates stimulate the proliferation of allogenic 
T cells.  DC can stimulate the T proliferation on the ratio of DCs to T 
cells. The ratio of 1 DC to 10 T cells exhibited the highest stimulating 
efficacy.  

 

Banked UCBs successfully produce functional CIKs 

Induced cells exhibit CIK phenotypes  

The CIK population with the CD3+CD56+ phenotype 

was extremely low in the banked UCB samples, and 

almost of the cells were CD8+. However, after 2 weeks 

of culture, the percentage of CD3+CD56+ cells had sig-

nificantly increased to 30.56±7.89%. Besides the 

CD3+CD56+ population, the cultured cells were almost 

completely CD3+CD56− cells (45.32±12.82%). The total 

CD3+ cells accounted for 86.76±45% of the cultured cell 

population.  

 

CIKs can bind to target cells 

Binding of CIKs to target cells is an essential property 

of CIKs. The assay showed that CIKs were able to bind 

to target tumor cells. The CIKs were stained with 

PKH26 and the breast, lung, and liver cancer cells 

were stained with CFSE. In comparison with control 

cells (without EDTA), the CIKs bound to the three 

kinds of tested cancer cells. The percentages of conju-

gated CIK/cancer cells with double staining (PKH26 

and CFSE) were maximal at 15 min after mixing(7.21% 

at 5 min, 28.92% at 15 min) (Fig. 4). 
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preserved PB, and found similar phenotypes between 

the two DC samples for endocytic capacity, chemotac-

tic migratory capacities, and primary allogeneic T-cell 

responses.  

In the next experiment, we successfully produced 

CIKs from banked MNC samples. In fact, the induced 

CIKs exhibited all the particular characteristics of 

CIKs, including exhibition of the CD3+CD56+ pheno-

type and binding to some target cells such as MCF7 

breast cancer cells, PC3 prostate cancer cells, and 

HepG2 liver carcinoma cells. In particular, these CIKs 

could directly lyse the target cells. With these proper-

ties, the obtained CIKs were clearly similar to CIKs 

derived from fresh UCB samples. In fact, (Introna et 

al., 2006)reported that fresh UCB-derived CIKs 

showed strong cytotoxic activity against a variety of 

target tumor cell lines. In addition, (Li et al., 

2010)showed that all expanded CB-derived CIKs/NK 

cells showed cytotoxic activity against the K562 cell 

line.  

 

 

CONCLUSIONS 

UCB has been considered to be a source of HSCs for a 

long time. However, application of UCB samples to 

treatment of hematopoietic diseases is limited. The 

results of the present study suggest that banked UCB 

samples can act as sources of immune cells, including 

DCs and CIKs, for immunotherapy. In this study, func-

tional DCs and CIKS were successfully produced from 

banked UCB samples. The DCs strongly expressed the 

specific markers of DCs, such as CD40, CD80, CD86, 

and HLA-DR, phagocytosed an antigen, and efficient-

ly stimulated T cell proliferation. Furthermore, the 

CIKs strongly inhibited cancer cell proliferation. The 

present results suggest that banked UCB samples are 

useful for not only regenerative medicine, but also 

immunotherapy for cancer treatment.  
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