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ABSTRACT
Breast cancer is theworld'smost commoncancer inwomenand is the leading causeof their cancer-
related mortality. Its early diagnosis with conventional therapies such as surgery, chemotherapy,
and radiotherapy can give good results in most breast cancer patients. However, these therapies
provide poor outcomes in metastatic breast cancers or late-stage breast cancer. Therefore, as an-
other effort for breast cancer treatment, immunotherapy is now considered the fourth-line cancer
treatment besides conventional therapies. In this article, we focus on breast cancer treatment by
transplantation of cytokine-induced killer cells (CIKs) and dendritic cells (DCs). While CIKs are ef-
fector cells that can directly attack and kill breast cancer cells, DCs support other immune cells in
including CIKs in antitumor activities. Although transplantation of CIKs or DCs alone gave limited
results in breast cancer treatment, the combination of CIKs and DCs in current clinical trials demon-
strated significant results. Thus, we propose that CIK-DC therapy will emerge as a new option for
breast cancer treatment soon.
Keywords: Breast cancer, Cytokine induced killer cell, DC-CIK therapy, Dendritic cell, Immunother-
apy

INTRODUCTION
Breast cancer is the world’s most common cancer in
women and is the leading cause of their cancer-related
mortality. It can usually affect women of all ages.
In the US itself, breast cancer incidence in women is
up by 30%, recorded in 20191. During 1996 – 2015,
about 14,222 new breast cancer cases were reported
(including 13,948 women, accounting for 98%), and
more than half were diagnosed with stage II while
stage III and IV were about 26%2.
Early diagnosis of breast cancer combined with con-
ventional therapy such as surgery, chemotherapy, and
radiotherapy is the most common strategy. How-
ever, due to the heterogeneous nature of breast cancer
and the incidence of metastasis, it remains incurable.
Therefore, in the efforts against cancer, immunother-
apy has emerged as the fourth line of cancer treatment
besides conventional therapy. Immunotherapy har-
nesses the complexity of the natural immune system
to fight cancer, either actively or passively; the strate-
gies aim to boost host immunity to fight cancer again.
Massive research on immunotherapy has produced
many promising clinical results, including treatment
with checkpoint inhibitory, cytokine, and adoptive
cell therapies3,4. Additionally, the breakthrough of
using anti-PD-1 and anti-PD-L1 antibodies in treat-
ment with metastatic, triple-negative breast cancer

patients has illuminated the field of immunotherapy
for breast cancer treatment5.
Adoptive cell immunotherapy offers an approach that
selectively targets cancer with high efficiency and low
risk of side effects6. Cell immunotherapy is a promis-
ing strategy aimed at improving the antitumor ac-
tivity of the immune system. Based on the concept
of harnessing the immune system, several concepts
have been developed for cell-based immunotherapy
approach, including adoptive cell therapy with LAK,
TIL, CAR-T, NK, and CIK or cancer vaccine with
DCs-based immunotherapy.
In this review, we focus on studying cytokine-induced
killer cells (CIK) and dendritic cells (DCs) in breast
cancer treatment. Cell immunotherapy is a promising
strategy aimed at improving the antitumor activity of
an immune system.

CYTOKINE-INDUCED KILLER CELLS
& DENDRITIC CELLS FOR BREAST
CANCER TREATMENTS

CIKs and their cytotoxic mechanisms to-
ward tumor cells

What are CIKs

Cytokine-induced killer cells (CIKs) are a hetero-
geneous population characterized by the frequency
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of three populations: CD3+CD56+ (NK-like T),
CD3+CD56− (T lymphocytes), and CD3−CD56+

(NK cells). This population is produced only by the in
vitro culture of MNCs supplemented with cytokines.
The first protocol for CIK production was introduced
by Schmidt-Wolf et al. in the 1990s7.

How to produce CIKs?
CIK cells can be easily produced in ex-vivo conditions
using MNCs from bone marrow, peripheral blood,
or umbilical cord blood in combination with supple-
ments of interferon-gamma (IFN-γ) and interleukin-
2 (IL-2) with antibody-CD3 clone OKT3 over short-
term of 2 – 3 weeks. The culture condition of CIK was
modified from the LAK production protocol adding
1000 U/ml of INF-γ 24 hours before culture in the
condition of anti-CD3 and IL-28. The addition of
IFN-g significantly enhances CIK cytotoxicity com-
pared to the LAK culture method. Indeed, IFN-g
plays a role in inducing IL-12 production by activat-
ing monocytes9,10. Furthermore, compared to LAK
cells, CIK cells showed a higher ex-vivo expansion
and prolonged in-vivo antitumor effect without ex-
ogenous cytokine IL-211,12.
The ratios of the three different cell populations in-
side a CIK population are different between culture
and inducible protocol. Generally, a CIK population
is characterized by average 70 — 80% of CD3+ cells,
CD3+CD8+ cells over 60–80% and CD3+CD56+

cells over 20 — 30%13. Antitumor effects of the CIK
population are best seen in CD3+CD56+ population,
a subset of CD3+T lymphocytes that co-express nat-
ural killer cell protein CD5614,15. The CD3+CD56+

subset is derived from CD3+CD8+ T lymphocytes,
acquiring the terminally differentiated effector phe-
notype and granular structure of NK cells and higher
levels of secreted antitumor cytokine IFN-γ , TNF-
α , Granzyme B/Perforin15–17. In-vitro expanded-
CIK significantly increased CD3+CD8+ T cells and
CD3+CD56+ NK-like T cells15,17.

Antitumor activity of CIK population
The antitumor activities of CIK population are ac-
quired from the activities of three different cells in-
side. All subsets of CIK populations (CD3+CD56−,
CD3+CD56+, and CD3−CD56+) display antitumor
activity through various mechanisms (Figure 1).
CD3+CD56+ cell subset is capable of inducingMHC-
unrestricted antitumor cytotoxicity 14,18. Indeed,
CIKs also display their cytotoxic capacity in case of
blocking of their receptors (CD2, CD3, CD8, CD28,
CD56, very late antigen [VLA-4], T-cell receptor

[TCR]αβ , MHC class I and II) by antibodies. The cy-
totoxic function of these populations heavily depends
on engaging several activation receptors and releas-
ing Granzyme-B/Perforin proteins from CIKs19. As
a result of co-expression of NK and T cell markers,
Pievani et al. (2011) suggested that the CD3+CD56+

cells acquire dual cytotoxic functions16, which stem
from NK-cytotoxic functions and T-cell cytotoxic
mechanisms. Antitumor activities of CIK cells re-
quire the direct interaction between CIK and tumor
cells through surface markers16,20. These interac-
tions induce the release of granzyme B and perforin
to mediate CIK-related killing function and promote
IFN-γ and TNF-α production21. The interactions
via receptors between CIKs and tumor cells are not
well-understood; some recent studies suggested four
main interactions between CIKs and tumor cells. The
first interaction is performed by receptor leukocyte
function-associated antigen-1 (LFA-1) on the CIKs
with their ligands in tumor cells (ICAM-1, -2, and
-3). Indeed, if the LFA-1 or ICAM-1 is blocked,
the cytotoxic potential is significantly reduced15,22,23.
The second interaction that plays an essential role in
tumor recognition by CIK cells is the natural killer
group 2 D (NKG2D) receptor on CIK cells and their
ligands in tumor cells. NKG2D receptor is a mem-
ber of the c-type lectin-activating receptor family ex-
pressed in the NK cells and NKG2D ligands: stress-
inducible molecules on both solid and hematologic
tumors, such as the MHC class I-related molecules A
and B (MIC A/B) and members of the UL16-binding
protein family (ULBP1-4) expressed in tumor cells.
Interestingly, NKG2D ligands appear to express a pat-
tern relatively restricted to malignant tumors24,25.
The expression of NKG2D receptors is involved in the
high dose of IL-2 presenting in the culture medium.
Besides IL-2, IL-15 also seems to be a target recog-
nition of NKG2D26. The third interaction relates
to the expression of CD56 expressed on CIKs with
their ligands in tumor cells. Introna et al. suggested
that CD56 plays a role in tumor recognition and cy-
totoxicity of CIK cells. Therefore, when antibodies
blocked CD56 in the CIKs, the cytolysis of CIKs re-
duced27,28. The fourth interaction relate to Fas lig-
and (FasL) highly expressed inCIKs and Fas on tumor
cells8,29. In a recent study, Meng et al. analyzed the
transcriptomic atlas of CIKs and confirmed the high
expression of FasL in CIKs30. The direct contact of
FasL on Fas triggers Fas-dependent apoptosis mecha-
nism in tumor cells15,16,19. Recently, the interactions
of NKp30 and DNAM-1 expressed in CIKs with their
ligands on tumor cells play a role in antitumor cyto-
toxicity of CIKs16.
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Figure 1: The antitumor activities of CIK population are acquired from the activities of three different 
cells inside (CD3+CD56−,CD3+CD56+, and CD3−CD56+). (A) The CD3+CD56+cell population can kill the tu-
mor cells by releasing Gramzym B/Perforin after interacting with tumor cells through surface markers. (B) The 
CD3−CD56+cell population displays the antitumor activities similar to NK cells, while (C) the CD3+CD56− cell 
population exhibits the antitumor activities similar to T cytotoxic cells. 
https://doi.org/10.6084/m9.figshare.17104232.v1
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Some recent studies revealed that CIK could per-
form the antibody-dependent cell cytotoxicity medi-
ated by the expression of CD16. This observation is
different between groups. Some studies suggested a
subset of CD3+CD56+CD16+ in the population of
CD3+CD56+31–34, while other groups did not de-
tect the expression of this protein in the CD3+CD56+

population11,15,35. Cappuzzello et al. suggested that
the expression of CD16 in the CIK population was
donor-dependent8. In a study of 60 samples, the
CD3+CD56+CD16+ population ranged from 2.3%
—54.2% (mean 16± 13.3%). In vitro study andmAbs
enhanced the specific lysis rate of CIK cells against
EGFR- and Her-expressed cell lines. In TBNC-
Patient-Derived Xenograft (PDX) models, treatment
combining monoclonal antibody (mAb) and CIK sig-
nificantly prolonged survival and reduced tumor vol-
ume. According to tumor section analyses, the com-
bination also resulted in a higher infiltration of im-
mune cells in the tumor36.

In-vivo antitumor activity of CIKs
In a preclinical study, infused-allogeneic CIK cells
able to locate and increase in spleen and cervical
lymph nodes and remain in tumor site for up to 21
suggested prolonged antitumor effects. In regard to
graft versus host disease (GVHD), models, dose up to
20.106 allogeneic CIK cells was tolerated well com-
pared to naïve T cell infusion, which quickly de-
veloped severe acute GVHD18. CIK cells demon-
strated antitumor activity toward a wide range of can-
cer cell lines and freshly isolated cancer cells. Further-
more, numerous studies proved CIK’s ability to treat
both hematologic and solid tumors13,20,21,37,38. Re-
cently, Capellero et al. published a preclinical study;
the CIK cells from EOC patients efficiently killed
patient-derived ovarian cancer cell lines (pdOVC),
with no difference between autologous and allogeneic
targets39. Also, the study indicated that CIK cells also
efficiently killed chemotherapy-survived pdOVC; the
killing ability was superior due to the high expression
of stress ligand in tumor cells after being treated with
carboplatin. In in-vivomodels, CIK infusion resulted
in high necrotic areas and a high rate of CIK infil-
tration. In a study with breast cancer cell line MCF-
7, CIK strongly inhibits proliferation of both radio-
resistant and normal MCF-7 cells17,40.
Clinically, in 2020, Ying Zhang and Schmidt-Wolf
published an updated international registry over the
past ten years of CIK immunotherapy 13. A total of
106 clinical trials was registered through IRCC; 4,889
patients with more than 30 types of cancers received

CIK treatment along with/without conventional ther-
apy. Treatment with CIK-based therapy significantly
improves mPFS and mOS of patients. Patients’ im-
mune systemwas significantly altered: CD3+CD56+,
CD3+CD8+, CD4+/CD8+ population ratio were el-
evated while T-reg population CD4+CD25+FoxP3+

was decreased. Also, the level of Th-1 associated cy-
tokine was increased after CIK treatment. In terms of
safety, CIK treatment-related side effects were mostly
grade I and II such as fever, chills, fatigue, headache,
and skin rash. The incidence of grade III–IV toxic-
ities was rare in the CIK treatment group. Infusion
of allogeneic CIK was related to acute and chronic
GVHD; however, patients showed good –tolerance
the immunosuppressive regimen. The CIK treatment
reported a higher Karnofsky score (KPS), better ap-
petite, improved sleep, weight gain, and pain relief.

DCsandtheir cytotoxicmechanismstoward
tumor cells

What dendritic cells are?
Dendritic cells (DCs) are known as professional
antigen-presenting cells (APCs). The DCs’ ability to
present antigen attracts attention as carriers for can-
cer vaccine approaches41. In the body, DCs are acti-
vated and matured in response to the environmental
stimulator. The activation of DCs further mediates
T cell activation through the engagement of MHC-
class I/II and co-stimulation with cytokines. The
DC-based vaccinations inhibit tumor growth by alter-
ing host lymphocyte composition. Ex-vivo expanded
TAA-loaded DCs have been widely approached in
a clinical study for targeting tumor and boosting
specific-targeting immune response. Over the past
two decades, DC-based therapy represents a feasible
approach to elicit antitumor immunity while remain-
ing safe and well-tolerated in patients.

How to produce DCs?
Current approaches of DC-based immunotherapy in-
clude the use of isolatedCD14+monocytes orCD34+

HPC from blood or bone marrow 42. Several pro-
tocols have been developed using unstimulated DCs,
ex-vivo matured DCs or cell-lysate/TAA-pulsed DCs,
in-situ DC vaccination, and DC-derived exosomes43.
The first generation used tumor antigen-loaded im-
mature DCs and achieved poor clinical response with
only 3.3% tumor regression. The second-generation
DC vaccines used matured monocyte-derived DCs,
and the treatment reached 8 — 15% objective re-
sponse rates with the median OS increasing by ~20%
in some studies44.

4703



Biomedical Research and Therapy, 2021; 8(11):4700-4717

The roles of DCs in anti-tumors
Unlike CIKs — effector cells that can directly at-
tack cancer cells and kill them — DCs are antigen-
presenting cells so that they indirectly strengthen the
antitumor process of the immune system. However,
they play an essential role in immune response in
cancer treatment. Indeed, cancer cells usually escape
from the immune surveillance in cancer patients, es-
pecially the sub-population of cancer stem cells in-
side. The effector T cells inside these patients can-
not recognize cancer to kill them. DCs, in this case,
will activate the T cells (both CD4+ and CD8+ cells).
They can give some essential boost to immune re-
sponses in antitumor activity:
DCs enable CD4+ T cells to activate B and CD8+

cells. This process is based on the interaction between
DCs and CD4+ T cells through CD40. The CD40 in
DCs will interact with the CD40 ligand in T cells lead-
ing to DC activation. In the activated state, DCs can
prime T cells and up-regulate the expression of some
co-stimulatory molecules and produce IL-12. Then,
IL-12 causes polarization in naïve CD4+ cells toward
Th1 cells orTh2 cells. Th1 cells andTh2 cells will pro-
mote CD8+ cells and B cells through some cytokines
(IL-2, IL-4, IL-5, IL-13, and IFN-g).
DCs also cross-talk with NKs and play a pivotal role
in the innate immune response against cancer45. DCs
interact with NKs via CXCR3 in the draining lymph
nodes in a ”touch and go” mode lasting from 300s to
4h46. As a result, DCs will produce IL-12, IL-18, IL-
27, type I IFNs, and IL-15, PGE2. These cytokines di-
rectly affect NK cells, triggering NK cell proliferation
and activating NK cells. The activated NK cells leave
the lymph node, infiltrate tumors, and attack cancer
cells in the tumors.

In-vivo antitumor activity of DCs
Clinical trials of DC vaccination showed promising
results. In the role of APC,DCs are used to present tu-
mor antigens to other immune cells. Therefore, both
tumor-specific antigens and tumor-associated anti-
gens are used in DC vaccinations. These antigens
can be peptides/proteins, mRNA, or tumor lysates47.
Thus, DC vaccination appears a safe and feasible
strategy; furthermore, the vaccination combines with
antigen-specific CTL activity and positive natural
killer response in > 50% cancer patients48,49.
In 2010, sipuleucel-T, the first cellular-based im-
munotherapy, was approved by USA FDA for the
treatment of prostate cancer patients. The interven-
tion was activated DCs by recombinant fusion pro-
tein PA2024, the fusion of GM-CSF with prostate

antigen, which can be classified as the intersec-
tion between first and second generation of DC
vaccines. The randomized clinical trial was con-
ducted on 512 patients; sipuleucel-t treatment in-
creased median survival by 4.1 months compared to
the placebo group (25.8 months vs. 21.7 months, re-
spectively); however, the treatment failed to achieve
better disease progression50. Various kinds of cancer
also were clinically treated by DCs such as glioblas-
toma51,52, acute myeloid leukemia53,54, breast can-
cer55, metastatic colorectal cancer56, prostate can-
cer57, mesothelioma58, lung cancer59, hepatocel-
lular carcinoma60, pancreatic cancer61, advanced
melanoma62, non-small cell lung cancer63, bone and
soft tissue sarcoma64, and myeloma65,66.

Collaborative mechanisms of CIKs and DCs
in antitumor cells
Since DC therapy aims to improve host adaptive im-
mune responses, different strategies have been de-
veloped harnessing the immune-stimulation effects
of DC with effector cell-based immunotherapy ex
vivo. Stimulation activity of DCs is through the abil-
ity to capture, processing and presenting a tumor-
associated antigen (TAAs), which induces specific an-
titumor responses. The intervention combining DCs
and T cells ex vivo resulted in a lower risk of relapse
andmetastasis, lower level of T-reg, and increasedTh1
polarization in breast cancer patients67.
In recent years, several studies have reported that
the synergistic antitumor effect of CIK blends with
DCs13,21,68. The strategy provides the ability to target
cancer cells in anMHC-independentmanner through
CIK cells, while DCs mount an immune response
through anMHC-restriction mechanism. Co-culture
of CIK and DCs significantly improved the antitu-
mor effect by increasing cytokine IL-12 and IFN-
g production; the interaction is a TCR-independent
mechanism29,69,70. Recent studies have proved that
DC enhances CIK through cell-cell contact in an
MHC-independent manner but by CD40L/CD40; in-
hibiting CD40L/CD40 interaction abrogates these
changes70,71. Interaction of DCs and CIK thus al-
ters the expression of several membrane proteins,
including upregulation of membrane protein CD28
and CD40L on CIK, which are co-stimulatory sig-
nals promoting immune activation. Further, an in-
crease in proliferation and CIK phenotype (includ-
ing CD3+, CD8+, and CD3+CD56+ population) has
been observed after co-culture with DCs72. The con-
comitant of Treg in CIK population also decreases
in both cell and mRNA levels after co-culture with
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DCs72,73. In in-vivo models, DC plus CIK revealed
a superior antitumor effect compared to single ther-
apy 74. The treatment altered host immunity, alter-
ing host immune-system composition and augment-
ing immune antitumor response by enhancing CTL
and NK-cell function. The ratio of CD4+/CD8+ sig-
nificantly increased after DC/CIK treatment, repre-
sented the immunomodulatory effect, and improved
immune-surveillance of DC-CIK to the host immune
system75,76. Also, the level of Th1-associated cy-
tokine was elevated, including IL-2, IFN-g, IL-12. In
reverse, the treatment resulted in a lower proportion
of immunosuppressive factors, T-reg cell, cytokine IL-
10, and TGF-β 77,78.
DCs plus CIKs have been proved as a promising
immunotherapy approach in treatment of advanced
solid tumors. In a ten-year review, 37 of 85 stud-
ies were conducted with DC-CIK treatment for lung
cancer, hepatocellular carcinoma, pancreatic cancer,
colorectal cancer, renal cell carcinoma, and breast
cancer13. DC-CIK treatment shows significantly en-
hanced response rate in patients, better clinical benefit
rate, and higher median overall survival compared to
conventional treatment group.
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Table 1: Clinical trials of CIK and DC-CIK cells on breast cancer patients

Year (Ref) Study type Disease Patients
(treatment)

Pre-treatment Intervention Immunotherapy clinical response

201479 Retrospective TNBC
(stage I-III)

90 (45) Surgery, adjuvant 
chemotherapy with or 
without radiation

autologous CIK cells
8.7 x 109 – 1.2 x 1010 cells/cycle

(4 - 52 cycles)

1-, 2-, 3-, and 4-year DFS rate: 97.7%,
90.1%, 83.4%, 75.2%.
1-, 2-, 3-, and 4-year OS rate:
100.0%, 100.0%, 96.7%, 92.4%,

201880 Retrospective TNBC 340 (77) Surgery, chemotherapy autologous CIK cells
5 - 7.7 x 109 cells/cycle
(1 - 19 cycles)

5-years OS rate 94.3%
5-year DFS rate 77.9%
PD: 16/77 cases (20.8%)
Death: 4/77 cases (5.2%)

201917 Retrospective BC
stage I-III

310 autologous CIK
8.7 - 12 x 109 cells/cycle
(at least 4 cycles)

5-year OS rate: 85.7%
5-year RFS rate: 80.8%

201981 Retrospective TBNC 294

Surgery with 
chemotherapy or 
radiotherapy or 
endocrino-therapy 
Surgery and 
chemotherapy

autologous CIK > 5 x 
109 cells/cycle (1- 26 
cycles)

1-, 3-, and 5-year DFS rate: 99.3%,
91.8%, 99.1%
1-, 3-, and 5-year OS rate 99.3%, 96.6%,
93.4%

201582 Clinical trial Metastatic
breast cancer

20 Chemotherapy autologous DC and CIK
1 x 109 CIK with 1 x 107 DCs
per cycle
(8 cycles)

CR: 3/20 cases
PR: 12/20 cases
SD: 2/20 cases
PD: 3/20 cases

201383 Metastatic
breast cancer

166
(87)

Chemotherapy HDC with autologous DC/CIK

(3 cycles)

mOS: 33.1 months
3-year OS rate: 20.7% (18/87 patients).
4-year OS rate: 9.2% (8/87 cases)

201584

Randomized 

Controlled Trial 

Clinical trial Advanced 
cancer stage IV

12 cases with
breast cancer

Surgery or 
chemotherapy or 
radiation

autologous DC/CIK
5.7+ 2.94 x 109 cells/cycle
(6 cycles)

DCR: 25% (3/12 cases)

Continued on next page4706
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Table 1 continued
Year (Ref) Studytype Disease Patients

(treatment)
Pre-treatment Intervention Immunotherapy clinical response

201685 Clinical trial TNBC 23 Chemotherapy autologous DC/CIK
(3 cycles)

PR: 3/23
SD: 56.5% (13/23)
PD: 30.4% (7/23)
ORR: 13%
DCR: 69.6%
mPFS was 13.5 months

201786 Retrospective Stage IV 
breast cancer

368
(188)

Chemotherapy autologous DC/CIK
6 - 10× 109

cells/infusion
(4 infusions/cycle, > 3 cycles)

5-year DFS rate: 42%
5-year OS rate: 44%
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TRANSPLANTATIONOF CIKS AND
DCS TO TREAT BREAST CANCER
Transplantation of CIK cells in the treat-
ment of breast cancer
The clinical approach of CIK-based adoptive cell
therapy has been growing vigorously in recent years
(Tables 1 and 2). In breast cancer treatment, many
patients had enrolled in clinical retrospective studies
of CIK immunotherapy.
In 2014, a retrospective studywas published byKePan
et al.73; the study included 90 patientswithTNBC sta-
tus; 45 of them received adjuvant CIK immunother-
apy (8.7 x 109 – 1.2 x 1010 cells/infusion) after com-
pleted chemotherapy without radiation therapy post-
mastectomy. Following the CIK treatment, TNBC
patients experienced better DFS and OS than con-
ventional treatment, using The Kaplan–Meier sur-
vival analysis method (P = 0.0382 and P = 0.0046,
respectively). The rate of 1-, 2-, 3-, and 4-year
DFS was higher in the CIK treatment group (CIK-
group: 97.7%, 90.1%, 83.4%, and 75.2%, respectively;
control-group: 88.9%, 64.4%, 62.1%, and 56.4%, re-
spectively). The rate of 1-, 2-, 3-, and 4-year OS was
higher in CIK treatment group (CIK-group: 100.0%,
100.0%, 96.7%, and 92.4%, respectively; control-
group: 95.6%, 88.6%, 76.3%, and 72.7%, respec-
tively). In further analysis of prognosis in TNBC
patients using Cox proportional hazards regression
analyses, CIK treatment and disease status were sig-
nificantly associated with favorable DFS and OS re-
sults. According to the Kaplan-Meier analysis result,
CIK treatment significantly enhanced OS and DFS
advanced-stage group. In contrast, the early-stage
TNBC showed no significant difference in response
to two treatment types73,87. In 2019, a retrospective
on 294 TNBC patients showed that CIK treatment
significantly enhanced 1-, 3-, and 5-year DFS (P =
0.047) and OS rate (P = 0.007) compared to the con-
trol group (adjuvant chemotherapy w/o radiation)81.
Furthermore, the data showed that higher CIK in-
fusion was correlated with a better antitumor effect;
more than six cycles of CIK treatment significantly
improved DFS (P = 0.02) and OS (P = 0.04). A study
on 77 CIK-treated patients similarly concluded that
higher cycles (> 6) are associated with better progno-
sis (p = 0.002 in DFS, p = 0.024 in OS) and decreased
risk of death87. CIK treatment lowered the incidence
of metastasis, 16/147 patients in the CIK group com-
pared to 29/147 patients in the control. In the uni-
variate and multivariate analysis, CIK treatment in-
fluenced DFS and OS in patients; adjuvant CIK treat-
ment was an independent prognostic factor for both

DFS (HR = 0.520, 95% CI:0.271 – 0.998, P = 0.049)
and OS (HR = 0.414, 95% CI:0.190 – 0.903, P = 0.027)
in multivariate analysis. In a study of 310 postop-
erative breast cancer patients, patients were selected
via random table method for the control and the CIK
treatment group. The 5-year recurrence-free survival
(RFS) rate and the 5-year OS rate were higher in the
CIK treatment group than the control (17). In sub-
group analysis according to disease type, patients with
ER/PR+ andHER2− significantly benefited fromCIK
treatment, and significantly prolonged OS was re-
ported. TNBC patients and ER+/PR+/HER2− pa-
tients also showed improved prognosis factors; how-
ever, those groups were not statistically different. The
study found that PD-L1 positive patients experienced
better CIK treatment response than PD-L1 negative
patients did; significantly higher 5-year RFS (87.6%
versus 76.4%, P = 0.048) and 5-year OS (95.2% ver-
sus 77.1%, P = 0.048%) was reported. This effect was
reversed in the control treatment group; PD-L1 was
correlated with worsened clinical outcomes. Further,
negative PD-L1 patients in two cohorts did not statis-
tically differ in RFS and OS, thus suggesting the use of
PD-L1 as a biomarker for the adoptive immunother-
apy approach for breast cancer patients.
Side effect in these retrospective studies was reported
mostly as spontaneous fever; no intolerable or se-
vere side effect was recorded followingCIK treatment.
Furthermore, no statistical difference was observed in
the incidence of adverse effects between the two treat-
ment groups.

Transplantation of DCs in treatment of
breast cancer
In breast cancer treatment, HER-2/neu pulsed DC in-
duced the expression of co-stimulatorCD28 onCD8+

T cells in HER-2/neu+DCIS patients88. Addition-
ally, the treatment increased levels of Th1-cytokine
IFN-g and induced HER-2/neu-specific CD8+ T cells
with a lower level of inhibitory B7 ligand CTLA-4.
A high disease-free survival rate and prolonged me-
dian disease-free survival were achieved in the vacci-
nated group, compared to control treatment89. P53-
pulsed DC vaccinations showed p53-specific T cell
response in advanced breast cancer patients90. Pa-
tients experienced prolonged survival and temporary
regression of metastasis while no toxicity was ob-
served during DC administration. ELISpot analy-
ses analyzed the specific T cell response; some pa-
tients experienced stable disease and lymph node re-
gression. Overall, the clinical efficiency of DC im-
munotherapy remains below expectations. Poor clin-
ical outcomes result from several factors, including
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Table 2: Registered clinical trials on ClinicalTrials.gov database

Year Identifier Phase Disease Intervention Status

2010 NCT01232062 not showed Breast Neoplasms
Neoplasm Metastasis

High dose 
chemotherapy with 
DC-CIK

Completed

2011 NCT01395056 not showed Breast Neoplasms
Neoplasm Metastasis

Cyclophosphamide 
combined thiotepa 
and carboplatin 
chemotherapy com-
bined with DC-CIK 
immunotherapy

Completed

2015 NCT02491697 Phase 2 Breast cancer DC-CIK 
immunotherapy 
with capecitabine

Active, 
not recruiting

2015 NCT02539017 Phase 2 Triple Negative Breast 
Neoplasms

DC-CIK combined 
with chemotherapy

Withdrawn

2015 NCT02450357 not showed Neoplastic Cells, 
Circulating

DC-CIK
immunotherapy

Completed

2016 NCT02886897 Phase 1
Phase 2

Breast Cancer DC-CIK and 
anti-PD-1 antibody

Unknown

2018 NCT03524261 Phase 2 Advanced breast cancer Activated CIK and 
CD3-MUC1 
Bispecific Antibody

Withdrawn

2020 NCT04282044 Phase 1 Triple Negative Breast 
Cancer
(advanced solid tumors)

CRX100 suspension
(autologous CIK)

Recruiting

2020 NCT04476641 Phase 2 Breast cancer DC-CIK
immunotherapy

Recruiting

lack of appropriate target antigens, downregulation of
TAA and MHC molecules in tumor cells, poor hom-
ing ability of adoptive transferred-DC to lymph node,
and rate of inducing target-specificCTL and immune-
suppressive tumor microenvironment42. However,
DC vaccination is a safe approach, thus facilitating
further modifications and research to improve the
clinical results.

DC-CIK cell transplantation in treatment
with breast cancer

Preclinical studies have proved the superior antitu-
mor effects of DC-combined CIK70,74,91,92. DC-CIK
combination has been widely used in clinical trials
besides chemotherapy for cancer treatment75,93–96.
Co-culturing DC and CIK leads to greater CIK anti-
cancer effect against cancer cell. In clinical trials, the
DC-CIK combination also showed that the clinical re-
sponse outweighs conventional therapy. In five ac-
cessed clinical studies on DC and CIK application, a

total of 589 breast cancer patients were enrolled, in-
cluding 330 patients under DC-CIK treatment. In
2013, Ren J et al. investigated the effect of high-dose
chemotherapy and DC-CIK compared to standard
dose chemotherapy for metastatic breast cancer treat-
ment in 166 patients83. The intervention was two cy-
cles of 120 mg/m2 docetaxel plus 175mg/m2 thiotepa
in combination with DC-CIK; the addition of carbo-
platin was optional. The trial group achieved a sig-
nificantly higher objective response rate compared to
SDC treatment, 25.9% versus 10.1%, respectively (P
= 0.009). In summary, 2 CR cases (2.4%), 20 PR
(23.5%) cases, and 42 SD (49.4%) cases were reported
in the HDC+DC-CIK treatment group. The median-
OSwere double that of the control group, 33.1months
in the experiment group and 15.2 months in the con-
trol group (P < 0.001). The median-PFS also signifi-
cantly improved in the experiment group, with an av-
erage of 10.2 months vs. 3.7 months (P < 0.001). In
the Cox regression model, HDC plus DC-CIK treat-
ment for HER-2 positive patients with less than three
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metastasis sites were correlated with better OS and
PFS prognosis. In the following clinical study in 2016,
23 metastatic pre-treated TNBC patients received a
combination of cyclophosphamide, thiotepa, carbo-
platin, and DC-CIK immunotherapy. The study re-
ported a 13.0% objective response rate (3 PR cases)
and a 69.6% disease control rate (3 PR cases, 13 SD
cases). The median-FPS reached 13.5 months (95%
CI, 10.1 – 16.9 months), and the median OS was 15.2
months (95% CI, 12.5 – 18.1 months)85. In 2017, Lin
M et al. published a 10-year follow-up study from
2003–2013. About 368 staged-IV breast cancer pa-
tients were recruited, and 188 patients were treated
with one cycle of low-dose chemotherapy (Carmo-
fure) and at least three cycles of four DC-CIK infu-
sions86. One infusion regimen included 6 – 9.109

DC-CIK cells in 250 ml saline plus 1500 U/ml IL-
2 and 1% human albumin intravenously. Lympho-
cyte count and function were tested after DC-CIK
treatment from chemotherapy treatment. Th1-type
cytokine was elevated upon DC-CIK treatment, in-
cluding IL-2, TNF-β , and INF-γ . DC-CIK treatment
significantly improved OS and DFS compared to the
control group. The 5-year DFS was 42% in the exper-
iment group, while that of control group was 30% (P
< 0.01). The 5-year OS was 44% in the experimental
group versus 29% in the control group (P < 0.01). Ad-
ditionally, DC-CIK treatment independently lowered
the risk of disease progression (OR = 0.09, 95% CI
0.02 – 0.42, P < 0.01) and risk of death (OR=0.05, 95%
CI 0.01 – 0.37, p < 0.01), according to multivariate
Cox proportional regression analysis. DC-CIK treat-
ment represented a feasible cancer treatment strategy
with minimal side effects. The most common side ef-
fects were related to the chemotherapy. No lethal ad-
verse effects were reported following DC-CIK treat-
ment. Patients have received at least one infusion of
DC-CIK; no dose modification or disruption was re-
ported. The most common side effect was fever.
In 2014, a meta-analysis study about DCs, CIKs, and
the combination of DC-CIK treatment for breast can-
cer patients was published by Wang et al.97. The
meta-analysis study was conducted from 27 clini-
cal trials with 633 enrolled breast cancer patients
and compared DCs and CIKs treatment versus non-
DC/CIK treatment. According to the analyzed re-
sult, the 1-year survival rate of patients in the group
was significantly improved (P < 0.0001) for DC/CIK
treatment group. Higher rates of 2- and 3-year sur-
vival were also reported followingDC-CIK treatment;
however no significant statistical difference was noted
between the two groups (2-year survival: 83% versus
76%, P = 0.07; 3-year survival: 64% versus 48%, P =

0.07). The Karnofsky Performance Status Scale (KPS)
results showed that breast cancer patients significantly
improved fromDC-CIK treatment compared to non-
DC-CIK therapy (OR: 12.40, 95% CI = 6.61-18.19, P
< 0.0001). A higher clinical benefit rate was recorded
in DC-CIK group; however, the data was not sta-
tistically different. Additionally, the study analyzed
host immune response to DC-CIK therapy. Signifi-
cantly increased proportion of CD3+, CD4+, CD16+,
CD4+CD8+, CD3+CD56+ immune cell subsets (P <
0.00001) and enhancement in T cell immunity func-
tion (AG-NOR: OR = 0.68, P < 0.0001) were observed
after DC-CIK treatment. Several antitumor response
cytokines were elevated followingDC-CIK treatment,
including IL-2, IL-6, IL-12, IFN-γ , and TNF-α (P <
0.00001). Moreover, the level of serum cancer mark-
ers was significantly decreased after DC-CIK treat-
ment. Later, Hu et al.95 published a meta-analysis
to compare the efficacy and safety of DC-CIK ther-
apy versus conventional chemotherapy for breast can-
cer treatment. The study was conducted based on 11
randomized clinical trials with 941 breast cancer pa-
tients (including 386 cases who experienced CIK or
DC-CIK, 361 cases with conventional chemotherapy
only), with no statistical difference between the two
groups of patients. Most studies (9/11 studies) re-
ported CR and PR; the difference was significant be-
tween the CIK-DC treatment group and the conven-
tional treatment group (CR: RR = 1.54, 95% CI: 1.09-
2.19; PR: RR = 1.33, 95%CI: 1.11 – 1.59). In themeta-
analysis, ORRwas reported in 10 studies, significantly
different between DC-CIK and conventional groups
(RR = 1.37, 95% CI: 1.20 – 1.57). The incidence of
side effects was not significant betweenDC-CIK treat-
ment and non-DC-CIK and conventional treatment
groups in both meta-analyses. Side effects included
fever, leucocyte decrease, gastrointestinal adverse ef-
fects (OR: 0.72, 95% CI: 0.36 – 1.45, P = 0.36)97

and leukopenia, thrombocytopenia, hair loss, nau-
sea/vomiting, hepatic complications, and neurologic
complications95.

FUTURE PERSPECTIVES
Current clinical trial data demonstrated that DC-
CIK is a promising approach for breast cancer treat-
ment21. With chemotherapy’s success in improving
clinical response, the combination of DC-CIK pro-
longs survival in breast cancer patients. In a recent
study by Ren J et al. in 2013, DC-CIK combined with
HDC was used as first-line treatment for metastatic
breast cancer patients. Patients experienced delayed
disease relapse and longer survival time83. Success
in the clinical trials attracted research on CIK and
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DC; several strategies have been evaluated in vitro
and in vivo. DC-CIK cells efficiently targeted can-
cer stem cells; autologous CIK cells inhibited tumor
growth in PDX models91,92,98–100. Recent studies
have focused on modified CIK cells with chimeric
antigen receptors to enhance CIK cytotoxic function
and cancer-targeting ability 8,101,102. Ren et al. incor-
porated CIK cells with anti-EGFR chimeric antigen
receptor (CAR); the CAR-CIKs showed superior an-
titumor target against EGFR-positive tumor cells103.
The combination of CAR and CIK further enhanced
the secretion of IL-2 and IFN-gamma by CIK cells.
Besides aiming to modify CIK cells, the combination
of CIK cells with commercial immunotherapy drugs
is also under investigation. The combination of mAbs
with CIK cells showed promising results in preclini-
cal studies34,36,104. It improved cytotoxicity of CIK
cells via ADCC and increased infiltrated CIK cells
in tumor specimens. The prospective study by Zhou
et al. showed that PD-L1 expression in TNBC pa-
tients correlated with better response to CIK treat-
ment, thus suggesting the combination of PD-L1/PD-
1 immunotherapy treatment with CIK cells17.
In addition to the traditional autologous approach,
among several cell-based immunotherapies, CIK cells
are suggested as potential allogeneic cellular im-
munotherapy capable of approaching an ”off-the-
shelf ” strategy (Figure 2). The preclinical trial had
demonstrated low GVHD ability of CIK cells: al-
lograft of CIK cells associated with graft-versus-
tumor (GvT) showed minimal graft-versus-host-
disease (GvHD) side effect14,18,19,105. The clinical tri-
als showed that allogeneic CIKs after hematopoietic
stem cell transplantation (HSCT) showed a low inci-
dence of GvHD in recipients while inducing antitu-
mor response106–108. In 2012, Linn et al. reported a
clinical trial phase I/II with allogeneic-HSCT relapsed
patients; in five patients who developed immune re-
sponses attributed to CIK cell infusion, the risk of
acute-GvHD was low (3/16 patients) and easily con-
trolled107. In the combination of allogeneic CIK with
donor lymphocyte infusion (DLI), the incidence of a
GVHDwas mostly associated with DLI (8 of 12 cases,
total 16%)109.
Moreover, umbilical cord blood is an abundant and
available source of precursor cells for CIK; more cord
blood cells exert low immunogenicity 110,111. The
UCB-CIK cells showed greater proliferation capacity,
lower immunogenicity, lower expression of inhibitory
receptor PD-1, and less susceptibility to chemother-
apy than PB-CIK cells do. Additionally, the UCB-
CIK cells showed higher production of IFN-γ and

IL-2 compared to PB-CIK cells. The antitumor ef-
fect was also higher in the UCB-CIK treatment group
both in vitro and in vivo112. The clinical study fur-
ther demonstrated the antitumor potential of UCB-
CIK with minimal toxicities113,114.
Further, large-scale production of GMP-grade CIK is
under vigorous study; Castiglia S et al. and Palmerini
P et al. suggested the significant impact of culture sys-
tems on CIK cell quality 115,116. Serum-free condi-
tions were studied to abrogate the in-consistent qual-
ity of human serum and human pool plasma. A recent
study demonstrated the uniformity of cryopreserved-
CIK cells for up to one year117. Cryopreserved-
CIK and cryopreserved PBMC derived-CIK main-
tained their cytotoxic function toward cancer cells,
however, they were lower than freshly-cultured CIK
cells117,118.

CONCLUSION
In recent years, immunotherapies for breast cancer
treatment have been developed vigorously. The suc-
cess of DC and CIK in both preclinical and clinical
studies demonstrated their position in first-line treat-
ment. Besides, it is worth noting that DC and CIK
cells are easily expanded in ex-vivo conditions inGMP
with a high expansion rate compared to other adop-
tive cell therapies. Further, the use of CIK in a clinical
trial is IL-2 independent, thus reducing the cytotoxi-
city of exogenous IL-2. Therefore, the treatment rep-
resents a promising approach with safety, tolerability,
and minimal toxicity. In breast cancer treatment, the
use of DC, CIK, or DC-CIK significantly prolonged
the survival of patients, improved quality of life, and
increased the patient’s immunity function. However,
the database was limited to China, the dosage of DC-
CIK remained heterogeneous, and CIK cells’ function
depended on donor quality. The clinical reports also
showed inconsistent format and bias results. There-
fore, it is essential to optimize the procedure of DC-
CIK therapy to create standard criteria for evaluating
DC-CIK. Furthermore, the DC-CIK therapy should
be assessed in multi-centered studies on a larger scale
and uniform patient disease status.

ABBREVIATIONS
CAR-T: Chimeric antigen receptor T cell
CIK: Cytokine induced killer cell
DFS: Disease-free survival
DLI: Donor lymphocyte infusion
GM-CSF: Granulocyte-macrophage colony-
stimulatin factor
GvHD: Graft-versus-host-disease
GvT: graft-versus-tumor
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Figure 2: New approach of DC-CIK therapy for breast cancer using autologous dendritic cells and allogenic 
CIKs. Allogenic CIKs are produced from umbilical cord blood and storaged in freezer until usage. Mature DCs are 
produced from mononucleated cells derived peripheral blood induced with cytokine (GMCSF, IL-4) and primed 
with antigens from breast tumors. Thawed CIKs and mature DCs are mixed and incubated before they are used to 
treating the breast cancer. https://doi.org/10.6084/m9.figshare.17104241.v1

HDC: High-dose chemotherapy
HSCT: Hematopoietic stem cell transplantation
ICAM: Intercellular cell adhesion molecule
IFN: Interferon
IL: Interleukine
LAK: Lymphokine-activated killer cell
MHC: Major histocompatibility complex
MIC A/B: MHC class I-related molecules A and B
NK: Natural killer cell
NKG2D: Natural killer group 2 D
OS: Overall survival
PB-CIK: Peripheral blood derived cytokine induced
killer cell
PBMC: Peripheral blood mononucleated cell
RFS: Recurrence-free survival
TAAs: Tumor-associated antigen
TBNC: Triple-negative breast cancer
TCR: T-cell receptor
Th1: T helper cell 1
TIL: Tumor-infiltrating lymphocyte
T-reg: Regulatory T cell
UCB-CIK: Umbilical cord blood derived cytokine in-
duced killer cell

VLA-4: Very late antigen 4
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