
Biomedical Research and Therapy 2016, 3(1): 476-482 
ISSN 2198-4093 
www.bmrat.org 

 

476 
Hypoxia promotes adipose-derived stem cell proliferation via VEGF 

  ORIGINAL RESEARCH  

 
Hypoxia promotes adipose-derived stem cell proliferation via VEGF  
 
Phuc Van Pham1,2,*, Ngoc Bich Vu1, Ngoc Kim Phan1,2 

 
1Laboratory of Stem Cell Research and Application, University of Science, Viet Nam National University, Ho Chi Minh city, Viet Nam 
2Department of Animal Physiology and Biotechnology, University of Science, Viet Nam National University, Ho Chi Minh city, Viet Nam 
*Corresponding author: pvphuc@hcmuns.edu.vn 

 
Received: 23 Aug 2015 / Accepted: 01 Jan 2016 / Published online: 29 Jan 2016 
©The Author(s) 2016. This article is published with open access by BioMedPress (BMP) 

 
Abstract— Adipose-derived stem cells (ADSCs) are a promising mesenchymal stem cell source with therapeutic 
applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study 
aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endotheli-
al growth factor (VEGF) in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction 
obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-
antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2) and normal oxygen (21% O2). The effects 
of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of 
VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF 
with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hy-
poxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF 
with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia 
stimulated ADSC proliferation in association with VEGF production.  
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INTRODUCTION 

Adipose-derived stem cells (ADSCs) have been widely 

used in many clinical fields. ADSCs exhibit the me-

senchymal stem cell (MSC) phenotype (Bourin et al., 

2013; Zimmerlin et al., 2013), as evidenced by the ex-

pression of MSC markers such as CD44, CD73, CD90 

and CD105. They can successfully differentiate into 

adipocytes, osteoblasts and chondrocytes, and have 

been trans-differentiated into other mesoderm cell 

types such as insulin producing cells (Karaoz et al., 

2013; Moshtagh et al., 2013), hepatocytes (Aurich et al., 

2009; Okura et al., 2010) and neuronal-like cells 

(Cardozo et al., 2010; Rezanejad et al., 2014). ADSC 

transplantation ameliorated some diseases such as 

cranio-maxillofacial hard-tissue defects (Sandor et al., 

2014), non-revascularizable critical limb ischemia 

(Bura et al., 2014), acute myocardial infarction and 

heart failure (Panfilov et al., 2013), complex perianal 

fistula in Crohn’s disease (de la Portilla et al., 2013; 

Garcia-Olmo et al., 2009), and chronic myocardial 

ischemia (Qayyum et al., 2012).  

In recent years, hypoxia has been applied to cultured 

ADSCs in vitro. In fact, hypoxia was demonstrated as a 

stimulator of ADSC proliferation, but its effects did 

not change the ADSC phenotype (Fotia et al., 2015; 

Wan Safwani et al., 2016). Hypoxia has also been 

demonstrated as a protector from senescence (Lee et 

al., 2015), genomic stability inducer (Bigot et al., 2015), 

maintainer of stemness (Fotia et al., 2015; Petrangeli et 

al., 2016; Wan Safwani et al., 2016), and enhancer of 

viability, motility and tropism (Feng et al., 2015). 

These hypoxia effects have been demonstrated 

through stimulation of hypoxia-inducible factor 1- 

(HIF-1) expression (Kakudo et al., 2015), generation 

of reactive oxygen species (ROS) and downstream 

phosphorylation of platelet-derived growth factor re-

ceptor  (PDGFR), extracellular signal-regulated ki-

DOI 10.7603/s40730-016-0004-x



Pham et al., 2016                                                                                                                                        Biomed Res Ther 2016, 3(1): 476-482 

Hypoxia promotes adipose-derived stem cell proliferation via VEGF 
477 

 

nases 1/2 (ERK1/2) and Akt (Kang et al., 2014; Kim et 

al., 2011).  

This study aimed to identify another mechanism of 

hypoxia that stimulates ADSC proliferation. Our find-

ings provide new insight into controlling ADSCs in 

research and medical applications. 

 

 

MATERIALS AND METHODS 

Isolation of stromal vascular fractions (SVFs) 

Adipose tissues were collected from the abdomen by 

aspiration with a suitable needle from donors who 

signed a consent form. Approximately 50–100 mL of 

lipoaspirate were collected in two 50 mL sterile sy-

ringes. The syringes were stored in a sterile box at 2–

8°C and were immediately transferred to the laborato-

ry. 

The SVF was isolated from adipose tissues using a 

Cell Extraction Kit (BioMedFactory, Ho Chi Minh, 

Vietnam) according to the manufacturer’s instruc-

tions. Briefly, adipose tissue was mixed with an en-

zyme solution containing collagenase at 37°C for 15 

min. Then, the cell suspension obtained was centri-

fuged at 3000 g for 10 min, and the SVF was obtained 

as the pellet. The pellet was washed with PBS to re-

move any residual enzymes, and resuspended in PBS 

to determine cell quantity and viability using an au-

tomatic cell counter (NucleoCounter, Chemometec, 

Denmark). 

SVF culture 

SVF samples were cultured in MSCCult medium 

(BioMedFactory) containing DMEM/F12 supple-

mented with antibiotic-antimycotic and 10% fetal bo-

vine serum (FBS). The cells were plated at 5 × 104 

cells/mL in T-75 flasks (Corning) and incubated at 

37°C with 5% CO2. After 3 days of incubation, 6 mL of 

fresh medium was added to each flask. After 7 days, 

the medium was replaced with 12 mL of fresh media. 

The medium was subsequently replaced every 3 days 

until the cells reached 70–80% confluence, and then 

they were subcultured. 

ADSC phenotyping and characterization 

Cell markers were analyzed following a previously 

published protocol. Briefly, cells were washed twice 

with PBS containing 1% bovine serum albumin (BSA). 

The cells were then stained with anti-CD14-FITC, anti-

CD44-PE, anti-CD45-FITC, anti-CD105-FITC, anti-

CD90-PE and anti-HLA-DR-FITC antibodies (all pur-

chased from BD Biosciences, San Jose, CA, USA). 

Stained cells were analyzed by a FACSCalibur flow 

cytometer (BD Biosciences). Isotype controls were 

used in all analyses. 

For differentiation into adipogenic cells, ADSCs were 

treated as described previously. Briefly, cells were 

plated at 1 × 104 cells/well in 24-well plates. At 70% 

confluence, the cells were cultured for 21 days in 

DMEM/F12 containing 0.5 mM 3-isobutyl-1-

methylxanthine, 1 nM dexamethasone, 0.1 mM indo-

methacin and 10% FBS (all purchased from Sigma-

Aldrich, St Louis, MO, USA). Adipogenic differentia-

tion was evaluated by observing lipid droplets in cells 

under a microscope. For differentiation into osteogen-

ic cells, ADSCs were plated at 1 × 104 cells/well in 24-

well plates. At 70% confluence, the cells were cultured 

for 21 days in DMEM/F12 containing 10% FBS, 1 × 10-7 

M dexamethasone, 50 μM ascorbic acid-2 phosphate 

and 10 mM β-glycerol phosphate (all purchased from 

Sigma-Aldrich). Osteogenic differentiation was con-

firmed by Alizarin red staining. 

Normoxia and hypoxia culture 

To determine the effect of hypoxia on cell proliferation, 
the ADSC were seeded at a density of 1000 cells/wellin 
96-well plates (Costar, Acton, MA, USA) and culturedat 
5% or 20% oxygen. On days 2, 4, 6, 8, 10, 12, 14 and 16, 
the cells were lysed in200 μL 0.02% sodium dodecyl sul-
phate (SDS) inDNase-free water, after which the cell 
number in thesamples was determined using a Pico-
GreendsDNAquantitation kit (Invitrogen). The number 
of cells was calculatedusing a theoretical value of 6.6 pg 
DNA/cell.  The experiment was performed three times, 
each in quadruplicate.  

Similarly, this procedure was repeated in a tri-gas in-

cubator in which the oxygen concentration was con-

trolled to 5%.  

Cell cycle 

Cell cycle analysis was carried out according to the 

following protocols. Cells from each group were 

washed twice with PBS and fixed in cold 70% ethanol 

for at least 3 h at 4°C. Cells were then washed twice 

with PBS and stained with 1 mL of propidium iodide 

(PI; 20 μg/mL). RNase A (10 μg/mL) was added to the 

samples and incubated for 3 h at 4°C. Stained cells 

were analyzed by flow cytometry using CellQuest Pro 

software (BD Biosciences, Franklin Lakes, NJ, USA).  

Effects of neutralizing VEGF 
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hypoxia: the first one is VEGF-dependent, and the 

second is VEGF-independent. In fact, the effects of 

hypoxia on ADSC proliferation have been demon-

strated to involve activation of the HIF-1ɑ pathway 

(Kakudo et al., 2015). Using ERK and Akt inhibitors, 

Kakudoet al. (2015) have determined that the effects of 

hypoxia on ADSC proliferation could be blocked, and 

that HIF-1α knockdown by siRNA partially inhibited 

the hypoxia-induced FGF-2 expression in ADSCs 

(Kakudo et al., 2015). In the second pathway, we spe-

culated that VEGF affects ADSCs via receptors other 

than VEGFR-1 and VEGR-2. Thus, we evaluated 

PDGFRβ expression in hypoxic ADSCs and showed 

that ADSCs highly expressed this receptor. In pre-

vious reports, PDGFRβ has been demonstrated as a 

facultative receptor for VEGF (Ball et al., 2007; Mabry 

et al., 2010; Pfister et al., 2012). Ball et al. (2007) have 

shown that VEGF-A could bind to both PDGFRα and 

PDGFRβ, inducing tyrosine phosphorylation. When 

inhibited, VEGF-A-induced MSC migration and proli-

feration were suppressed (Ball et al., 2007).  

In combination with previous studies, we propose that 

hypoxia can stimulate ADSC proliferation via two me-

chanisms: hypoxia-stimulated expression of HIF-1 

activates this signaling pathway, which induces VEGF 

secretion into the conditioned medium. The autocrine 

VEGF effect on ADSCs significantly triggers ADSC 

proliferation by efficiently reducing the proportion of 

S phase cells and reducing the doubling time.  

 

 

CONCLUSION 

ADSCs are promising stem cells for clinical applica-

tions. Hypoxia treatment was used to trigger ADSC 

proliferation. This study showed that hypoxia strong-

ly stimulated ADSC proliferation. Under hypoxia, 

ADSCs were stimulated to produce VEGF, however, 

VEGF may have an autocrine effect on ADSCs. Se-

creted VEGF stimulated ADSC proliferation via 

PDGFRβ. These findings will contribute to under-

standing stem cell proliferation under hypoxia as well 

as application of this mechanism to control stem cell 

proliferation and differentiation. 

 
 
 
 

ACKNOWLEDGEMENT 
This work is funded by Vietnam National Foundation 

for Science and Technology Development (NA-

FOSTED) under grant number 106-YS.06-2013.37. 

 

 

Competing interests 

The authors declare that they have no competing in-

terests. 

 

Open Access 
This article is distributed under the terms of the Creative Com-

mons Attribution License (CC-BY 4.0) which permits any use, 

distribution, and reproduction in any medium, provided the origi-

nal author(s) and the source are credited. 

 

References 

Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, 
T., Brulport, M., Hengstler, J.G., Dollinger, M.M., Fleig, W.E., et al. 
(2009). Hepatocyte differentiation of mesenchymal stem cells from 
human adipose tissue in vitro promotes hepatic integration in vivo. Gut 
58, 570-581. 

Ball, S.G., Shuttleworth, C.A., and Kielty, C.M. (2007). Vascular 
endothelial growth factor can signal through platelet-derived growth 
factor receptors. J Cell Biol 177, 489-500. 

Bigot, N., Mouche, A., Preti, M., Loisel, S., Renoud, M.L., Le Guevel, 
R., Sensebe, L., Tarte, K., and Pedeux, R. (2015). Hypoxia Differentially 
Modulates the Genomic Stability of Clinical-Grade ADSCs and BM-MSCs 
in Long-Term Culture. Stem Cells 33, 3608-3620. 

Bourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., 
March, K.L., Redl, H., Rubin, J.P., Yoshimura, K., and Gimble, J.M. 
(2013). Stromal cells from the adipose tissue-derived stromal vascular 
fraction and culture expanded adipose tissue-derived stromal/stem cells: a 
joint statement of the International Federation for Adipose Therapeutics 
and Science (IFATS) and the International Society for Cellular Therapy 
(ISCT). Cytotherapy 15, 641-648. 

Bura, A., Planat-Benard, V., Bourin, P., Silvestre, J.S., Gross, F., 
Grolleau, J.L., Saint-Lebese, B., Peyrafitte, J.A., Fleury, S., Gadelorge, 
M., et al. (2014). Phase I trial: the use of autologous cultured adipose-
derived stroma/stem cells to treat patients with non-revascularizable 
critical limb ischemia. Cytotherapy 16, 245-257. 

Cardozo, A., Ielpi, M., Gomez, D., and Argibay, P. (2010). Differential 
expression of Shh and BMP signaling in the potential conversion of human 
adipose tissue stem cells into neuron-like cells in vitro. Gene Expr 14, 307-
319. 

de la Portilla, F., Alba, F., Garcia-Olmo, D., Herrerias, J.M., Gonzalez, 
F.X., and Galindo, A. (2013). Expanded allogeneic adipose-derived stem 
cells (eASCs) for the treatment of complex perianal fistula in Crohn's 
disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal 
Dis 28, 313-323. 

Feng, Y., Zhu, M., Dangelmajer, S., Lee, Y.M., Wijesekera, O., 
Castellanos, C.X., Denduluri, A., Chaichana, K.L., Li, Q., Zhang, H., et 
al. (2015). Hypoxia-cultured human adipose-derived mesenchymal stem 



Pham et al., 2016                                                                                                                                        Biomed Res Ther 2016, 3(1): 476-482 

Hypoxia promotes adipose-derived stem cell proliferation via VEGF 
482 

 

cells are non-oncogenic and have enhanced viability, motility, and tropism 
to brain cancer. Cell Death Dis 6, e1797. 

Fotia, C., Massa, A., Boriani, F., Baldini, N., and Granchi, D. (2015). 
Hypoxia enhances proliferation and stemness of human adipose-derived 
mesenchymal stem cells. Cytotechnology 67, 1073-1084. 

Garcia-Olmo, D., Herreros, D., Pascual, I., Pascual, J.A., Del-Valle, E., 
Zorrilla, J., De-La-Quintana, P., Garcia-Arranz, M., and Pascual, M. 
(2009). Expanded adipose-derived stem cells for the treatment of 
complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52, 79-
86. 

He, J., Cai, Y., Luo, L.M., and Liu, H.B. (2015). Hypoxic adipose 
mesenchymal stem cells derived conditioned medium protects myocardial 
infarct in rat. Eur Rev Med Pharmacol Sci 19, 4397-4406. 

Hsiao, S.T., Lokmic, Z., Peshavariya, H., Abberton, K.M., Dusting, 
G.J., Lim, S.Y., and Dilley, R.J. (2013). Hypoxic conditioning enhances 
the angiogenic paracrine activity of human adipose-derived stem cells. 
Stem Cells Dev 22, 1614-1623. 

Kakudo, N., Morimoto, N., Ogawa, T., Taketani, S., and Kusumoto, K. 
(2015). Hypoxia Enhances Proliferation of Human Adipose-Derived Stem 
Cells via HIF-1a Activation. PLoS One 10, e0139890. 

Kang, S., Kim, S.M., and Sung, J.H. (2014). Cellular and molecular 
stimulation of adipose-derived stem cells under hypoxia. Cell Biol Int 38, 
553-562. 

Karaoz, E., Okcu, A., Unal, Z.S., Subasi, C., Saglam, O., and Duruksu, 
G. (2013). Adipose tissue-derived mesenchymal stromal cells efficiently 
differentiate into insulin-producing cells in pancreatic islet 
microenvironment both in vitro and in vivo. Cytotherapy 15, 557-570. 

Kim, J.H., Park, S.H., Park, S.G., Choi, J.S., Xia, Y., and Sung, J.H. 
(2011). The pivotal role of reactive oxygen species generation in the 
hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev 
20, 1753-1761. 

Lee, J., Byeon, J.S., Lee, K.S., Gu, N.Y., Lee, G.B., Kim, H.R., Cho, 
I.S., and Cha, S.H. (2015). Chondrogenic potential and anti-senescence 
effect of hypoxia on canine adipose mesenchymal stem cells. Vet Res 
Commun. 

Liu, L., Gao, J., Yuan, Y., Chang, Q., Liao, Y., and Lu, F. (2013). 
Hypoxia preconditioned human adipose derived mesenchymal stem cells 
enhance angiogenic potential via secretion of increased VEGF and bFGF. 
Cell Biol Int 37, 551-560. 

Mabry, R., Gilbertson, D.G., Frank, A., Vu, T., Ardourel, D., 
Ostrander, C., Stevens, B., Julien, S., Franke, S., Meengs, B., et al. 
(2010). A dual-targeting PDGFRbeta/VEGF-A molecule assembled from 
stable antibody fragments demonstrates anti-angiogenic activity in vitro 
and in vivo. MAbs 2, 20-34. 

Moshtagh, P.R., Emami, S.H., and Sharifi, A.M. (2013). Differentiation 
of human adipose-derived mesenchymal stem cell into insulin-producing 
cells: an in vitro study. J Physiol Biochem 69, 451-458. 

Okura, H., Komoda, H., Saga, A., Kakuta-Yamamoto, A., Hamada, Y., 
Fumimoto, Y., Lee, C.M., Ichinose, A., Sawa, Y., and Matsuyama, A. 
(2010). Properties of hepatocyte-like cell clusters from human adipose 
tissue-derived mesenchymal stem cells. Tissue Eng Part C Methods 16, 761-
770. 

Panfilov, I.A., de Jong, R., Takashima, S., and Duckers, H.J. (2013). 
Clinical study using adipose-derived mesenchymal-like stem cells in acute 
myocardial infarction and heart failure. Methods Mol Biol 1036, 207-212. 

Petrangeli, E., Coroniti, G., Brini, A.T., de Girolamo, L., Stanco, D., 
Niada, S., Silecchia, G., Morgante, E., Lubrano, C., Russo, M.A., et al. 
(2016). Hypoxia Promotes the Inflammatory Response and Stemness 
Features in Visceral Fat Stem Cells From Obese Subjects. J Cell Physiol 
231, 668-679. 

Pfister, C., Pfrommer, H., Tatagiba, M.S., and Roser, F. (2012). 
Vascular endothelial growth factor signals through platelet-derived growth 
factor receptor beta in meningiomas in vitro. Br J Cancer 107, 1702-1713. 

Qayyum, A.A., Haack-Sorensen, M., Mathiasen, A.B., Jorgensen, E., 
Ekblond, A., and Kastrup, J. (2012). Adipose-derived mesenchymal 
stromal cells for chronic myocardial ischemia (MyStromalCell Trial): 
study design. Regen Med 7, 421-428. 

Rezanejad, H., Soheili, Z.S., Haddad, F., Matin, M.M., Samiei, S., 
Manafi, A., and Ahmadieh, H. (2014). In vitro differentiation of adipose-
tissue-derived mesenchymal stem cells into neural retinal cells through 
expression of human PAX6 (5a) gene. Cell Tissue Res 356, 65-75. 

Rinkinen, J., Lisiecki, J., Oluwatobi, E., Peterson, J., De La Rosa, S., 
Ranganathan, K., Wang, S.C., Cederna, P.S., and Levi, B. (2015). Role 
of anatomical region and hypoxia on angiogenic markers in adipose-
derived stromal cells. J Reconstr Microsurg 31, 132-138. 

Sandor, G.K., Numminen, J., Wolff, J., Thesleff, T., Miettinen, A., 
Tuovinen, V.J., Mannerstrom, B., Patrikoski, M., Seppanen, R., 
Miettinen, S., et al. (2014). Adipose stem cells used to reconstruct 13 
cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 3, 
530-540. 

Wan Safwani, W.K., Wong, C.W., Yong, K.W., Choi, J.R., Mat 
Adenan, N.A., Omar, S.Z., Wan Abas, W.A., and Pingguan-Murphy, B. 
(2016). The effects of hypoxia and serum-free conditions on the stemness 
properties of human adipose-derived stem cells. Cytotechnology. 

Wang, X., Liu, C., Li, S., Xu, Y., Chen, P., Liu, Y., Ding, Q., Wahafu, 
W., Hong, B., and Yang, M. (2015). Hypoxia precondition promotes 
adipose-derived mesenchymal stem cells based repair of diabetic erectile 
dysfunction via augmenting angiogenesis and neuroprotection. PLoS One 
10, e0118951. 

Zimmerlin, L., Donnenberg, V.S., Rubin, J.P., and Donnenberg, A.D. 
(2013). Mesenchymal markers on human adipose stem/progenitor cells. 
Cytometry A 83, 134-140. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cite this article as: 
Pham, P., Vu, N., &Phan, N. (2016). Hypoxia promotes 
adipose-derived stem cell proliferation via VEGF. Bio-
medical Research And Therapy, 3(1): 476-482. 

 


	Hypoxia promotes adipose-derived stem cell proliferation via VEGF
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS

	DISCUSSION

	CONCLUSION
	ACKNOWLEDGEMENT
	Competing interests
	Open Access
	References


