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ABSTRACT
Infertility is a global disorder is resulted from factors related to men or women and affects not only
the individual, but also the family and society. Recently, stem cell-based therapy, known as regen-
erative medicine, uses stem cells or their derivatives to treat diseases, promising new ways to treat
infertility. Several in vitro studies as well as studies on animal models, confirm the role of Mesenchy-
mal stem cells (MSC), a kind of multipotent stem cells, in the recovery of folliculogenesis and sper-
matogenesis. MSCs play the role of therapeutic effect in infertility from two basic aspects including
regenerativemedicine through differentiation and paracrine pathway via participating in cell hom-
ing, immune regulation, and the secretion of active factors and exosomes. Furthermore, there are
fewer ethical concerns about using MSCs compared to other source of stem cells like embryonic
stem cells. Here we discuss therapeutic approaches of different sources of MSC to restore fertility,
then the basic aspects related to their paracrine effects will be described in detail. Finally, methods
of MSCs delivery in clinical trials for treatment of infertility-related disorders will be mentioned. But
before all these, first we will talk about pros and cons of MSC therapy.
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INTRODUCTION
Infertility is a social health problem affecting both
men and women and is defined as the inability to be-
come pregnant after at least one year of unprotected
sex1. Various factors affect couples’ fertility, includ-
ing genetic factors, anatomical defects, and environ-
mental elements2.
Somemajor reproductive disorders causing female in-
fertility include uterine abnormalities, ovulatory dis-
orders, a history of tubal pregnancy, and abnormal
menstruation3. According to WHO, uterine abnor-
malities include intrauterine adhesion (IUA; Asher-
man syndrome [AS]), endometriosis, uterine polyps,
and uterine fibroids4. Ovulatory disorders include
premature ovarian insufficiency (POI) and polycystic
ovary syndrome (PCOS)5.
Similarly, since several factors cause male infertility,
problems inmales are responsible for almost half of all
infertility cases. These factors include hypogonadism
(causing low blood testosterone levels), undescended
testicles, injured testicles, testicular cancer, varicocele,
premature ejaculation, and azoospermia6,7.
Some common genetic factors also cause infertility,
including Turner syndrome, Klein–Felter syndrome,
deletion of the azoospermia factor c region of the Y
chromosome, fragile X syndrome, androgen recep-
tor (AR) mutations (e.g., CAG repeat expansion), and

cystic fibrosis8,9.
While conventional therapies such as ovulation med-
ications or assisted reproductive technology are ef-
fective for treating infertility, they have some limi-
tations10. Therefore, recent studies have focused on
evaluating newer methods to treat infertility, such as
stem cell transplantation.
Stem cells are self-sustaining cells in an organism that
can differentiate into various cell types. Several types
of stem cells can be used for different purposes11.
Embryonic stem cells (ESCs) are among the most
widely used stem cells and can generate differenti-
ated cells with some germ-cell markers. However,
their use has disadvantages, such as ethical concerns
(destruction of human embryos) and tumor forma-
tion12. Therefore, mesenchymal stem cells (MSCs), a
new source of stem cells, are an alternative option for
infertility treatment. These spindle-shaped cells orig-
inate from various tissues and differentiate into cells
related to all three germ layers13. Since growth fac-
tors secreted byMSCs are involved in survival, prolif-
eration, migration, immunomodulation, and angio-
genesis, they have become ideal options for regener-
ative medicine14. The biological properties of MSCs
enable them to regulate immunological mechanisms
and contribute to the restoration of the ovaries, ovar-
ian tissue, and uterus. MSCs can also positively affect
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the treatment of oligozoospermia and azoospermia1.
In this review, we summarize the applications of
MSCs in infertility and focus on their potential roles
for further research in regenerative medicine.

THE PROS AND CONS OFMSC
THERAPY
In the past two decades, the emerging fields of stem
cell-based therapy have become a new opening for
regenerative medicine. Several stem cell types have
been found in human tissues, of which the most pop-
ular with scientists are MSCs since they have some
advantages over other types of stem cell-based thera-
pies for clinical use15. These advantages include their
availability, ease of isolation and expansion, broad po-
tential differentiation range, secretion of nutrients for
tissue regeneration, dynamic contributions to tissue
repair and remodeling after migration to damaged
sites, immunoregulatory features, low immunogenic-
ity that allows both autographs and allografts with-
out ethical issues, and limited replicative lifespan16.
These unique features provide superiority for MSCs
in cellular therapies and make them potential tools in
diverse conditions.
While there are currently no clear gold standards or
definite markers for identifying MSCs, the Interna-
tional Association of Cell Therapy set the minimum
basic criteria for identifying MSCs in 200617: (1)
MSCs must have the property of adhering to the cul-
ture surface under standard culture conditions; (2)
MSCs must express >95% of markers such as 5’-
nucleotidase ecto (NT5E/CD73), Thy-1 cell surface
antigen (THY1/CD90), and endoglin (ENG/CD105);
(3) MSCs must not express >95% of markers such as
integrin subunit alpha M (ITGAM/CD11b), CD19,
CD34, protein tyrosine phosphatase receptor type
C (PTPRC/CD45), CD79a, and human leukocyte
antigen–DR isotype (HLA-DR); (4) MSCs must be
able to differentiate into adipocytes, chondroblasts,
and osteoblasts in vitro18. While these positive
markers describe MSCs, no specific marker has been
confirmed for MSCs alone19. It should also be
noted that MSCs’ proliferation and differentiation ca-
pacities may differ markedly between their various
sources. These differences appear to be due to the di-
rect impact of their primarily specific microenviron-
ments20.
MSCs’ ability to down-regulate major histocompati-
bility complex (MHC) class II makes them suitable
for cell-based therapy without the risk of immune re-
jection21. In addition, their secretion of cytokines
and growth factors with paracrine effects makes them
ideal for regenerating damaged tissues22.

However, some challenges need to be considered for
MSC therapy in clinical settings. Despite all their su-
perior features, the heterogeneity ofMSC populations
has made it challenging to generalize the findings of
different research groups since differences in culture
conditions, donor, passage, and cell density affect the
MSC phenotype23.
A safety issue relating to tumorigenicity concerns has
recently posed a challenge to using MSCs for clinical
applications. Tumors can develop due to spontaneous
malignant transformation of MSCs after in vitro cul-
turing or the immunosuppressive environment cre-
ated by MSCs in vivo24. However, no evidence of tu-
mor development has been reported in MSC-treated
patients. Therefore, further investigation and moni-
toring of patients over longer follow-ups are essential
to draw conclusions about the tumorigenicity poten-
tial of MSC therapy in clinical settings.
Another challenge of MSCs therapy, which is its pri-
mary limitation, is the potential of MSCs to be em-
bolized and trigger clotting in the microvasculature,
leading to impaired homing capacity. In some clini-
cal studies, cases of pulmonary embolism have been
observed in patients who had been given multiple
intravenous MSC infusions25,26. To meet this chal-
lenge, various protocols based on anticoagulant ther-
apy such as low-dose heparin have been used in vari-
ous studies26.

THE ROLE OF DIFFERENTMSCS IN
RESTORING FERTILIZATION
WhileMSCs are traditionally isolated frombonemar-
row, they have also been found in many other adult
tissues in recent years, such as bonemarrow (BMSCs),
adipose tissue (ADSCs), endometrial tissue, men-
strual blood (MenSCs), umbilical cord (UCMSCs),
amnion (AMSCs), and placenta (PMSCs)18.

BMSCs
BMSCs are primarily present in the bone marrowmi-
croenvironment and are a type of adult stem cell.
These stem cells have multipotent differentiation po-
tential with low immunogenicity 27. Under certain
conditions, BMSCs can differentiate into various tis-
sue cells, such as adipocytes and bone cartilage, and
also self-renew 28. BMSCs are easily isolated and
proliferated in vitro and can also migrate to dam-
aged tissue29. Due to their immunomodulatory and
paracrine features, BMSCs are believed to have thera-
peutic potential for infertility 30. Studies have shown
that cytokines-induced BMSCs can migrate to the
damaged tissue and then secrete definite cytokines31.
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Figure 1: Diagrammatic illustration of the application of mesenchymal stem cells (MSCs) in infertility. A)
The derivation of the six types of MSCs from different sources. MSCs can be used for treating male and female
infertility. B) Some commonmale infertility disorders have been shown. C) Potential mechanisms that have been
suggested for the treatment of ovarian disorder and endometrial dysfunction. Abbreviations: POF: Premature
ovarian failure, PCOS: Polycystic ovarian, VEGF: Vascular endothelial growth factor, HGF: hepatocyte growth fac-
tor, LIF: leukemia inhibitory factor, TGF: transforming growth factor, Bcl-2: B-cell lymphoma, and MMP: matrix
metalloproteinase.

Some of these anti-fibrosis and anti-apoptosis cy-
tokines, such as insulin-like growth factor (IGF), vas-
cular endothelial growth factor (VEGF), and hepato-
cyte growth factor (HGF), help ovarian restoration30.
Furthermore, anti-inflammatory and anti-oxidative
cytokines such as interleukin (IL)-6 secreted by BM-
SCs can protect ovarian function31.
In vivo studies on ovaries indicated that BMSCs
are helpful in treating animal models with prema-
ture ovarian failure (POF). In a mouse model with
POF, BMSCs reactivated ovarian hormone produc-
tion and folliculogenesis that had been damaged by
chemotherapy 32. Another study in rats suggests
BMSCs can decrease perimenopause- and cisplatin-
induced apoptosis in granulosa cells33. In humans,

a clinical trial showed that autologous BMSCs might
improve POF conditions in patients with idiopathic
POF30.
Animal studies and clinical trials indicate successful
treatment of endometrial dysfunction with BMSCs.
Animal studies have shown that injection of BMSCs
resulted in the secretion of various growth factors into
the endometrium that can strongly stimulate cell pro-
liferation and differentiation in the microvascular en-
dothelium34–36. Moreover, in a mouse model with
a thin endometrium, BMSC transplantation upregu-
lated endometrial receptivity markers and improved
infertility 37. In a rat model, injection of BMSCs into
the uterine cavity caused high expression of endome-
trial cell markers, resulting in increased endometrial
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thickness38. Several studies have shown that BMSCs
migrate to the endometrium after systemic infusion.
Studies in amousemodel showed that BMSCsmigrate
from donor male bone marrow into female recipi-
ents’ uterus via systemic infusion. For example, im-
munofluorescence and fluorescent in situ hybridiza-
tion were performed on the uterus of female mice re-
ceiving BMSC transplantations frommales. Then, the
migration of BMSCswas confirmedby detecting theY
chromosome and the sex-determining region of Chr
Y (Sry) gene in the uterus of female mice39. More-
over, a clinical trial on women with bone marrow
transplants detected donor-derived cells in the uter-
ine tissue, confirming the migration of BMSCs40.
In AS (IUAs and/or intracervical adhesions), BMSC
transplantation effectively repaired endometrium
damage by upregulating the expression of the estro-
gen (ER) and progesterone (PR) receptors41. In a
rat model with endometrial cavity fibrosis, BMSC in-
jection improved reproductive function by restoring
endometrial receptivity and lining35. Clinical stud-
ies on AS suggest that the transplantation of pro-
minin 1 (PROM1/CD133)+ BMSCs into patients can
cause endometrial regeneration42. BMSC infusion
improved reproductive function in patients by en-
hancing endometrial vascular density and refining the
intensity and duration of menstruation. Surprisingly,
some patients became pregnant after treatment with-
out medical intervention42.
Besides these positive effects and features, there are
some limitations to using BMSCs, including the need
for an invasive procedure to isolate them, their low
proliferation capacity (due to a low number of MSCs
in the bone marrow), and their potential to differen-
tiate into undesirable cell types with increasing donor
age43,44 (Table 1).

ADSCs
The general characteristics of MSCs, such as self-
renewal, immunomodulation, and differentiation, are
also seen in ADSCs, which are isolated from adipose
tissue, and due to their ease of extraction through li-
posuction, have been intensively used in therapy 38.
Several animal studies have shown that ADSCs could
be used to treat infertility 45. One animal study
showed the positive effect of ADSC injection on the
viability of ovarian follicles. ADSCs increased the
maintenance of grafts in the ovary and improved
graft efficacy 46–48. For example, intraperitoneal in-
jection of ADSCs in mice improved ovarian function
in chemotherapy-damaged ovaries47. Similarly, AD-
SCs improved ovarian dysfunction in rat models, in-
creasing the rate of maturing follicles, oocyte number,

and corpora lutea by altering the gene expression and
secretion of specific paracrine cytokines46. Further-
more, ADSC treatment decreased apoptosis in gran-
ulosa cells. Therefore, ADSCs could be an alternative
approach for POF therapy that could be useful in clin-
ical applications and regenerative medicine47.
ADSCs can also improve fertility in animals by in-
creasing endometrial thickness and the number of
endometrial glands and microvessels. Furthermore,
since ADSCs can differentiate into endometrial cells,
their transplantation can repair the endometrial in-
jury. Treating rat models with ADSCs and estro-
gen restored endometrial tissue, proved via detecting
green fluorescent protein (GFP) in endometrial ep-
ithelial cells grafted with GFP-labeled ADSCs49,50. A
clinical trial using autologous ADSCs to repair the en-
dometrium recorded the first successful pregnancies
and childbirths. Its results showed that endometrium
thickness increased in 20 out of 25 patients after sub-
endometrial injection of ADSCs. Thirteenwomen be-
came pregnant, and nine successful childbirths were
recorded51.
Regarding male infertility, ADSCs helped restore fer-
tility and sperm production in rats with azoosper-
mia52. In humans, an in vitro study showed that the
supernatant product of ADSCs could restore sperm
motility in infertile male patients. This effect ap-
peared due to growth factors and bioactive molecules
positively affecting sperm motility 53. Furthermore,
intracytoplasmic injection of sperm showed that
paracrine factors in themedium isolated fromADSCs
could result in oocyte maturation and embryo forma-
tion54.
As mentioned above, ADSCs are a promising source
for therapeutic applications because of their ease of
isolation and availability in high frequency through li-
posuction. However, ADSCs are embedded in a com-
plex niche and interact with other factors and cells.
After their isolation via liposuction and separation
from their niche, ADSC features such as proliferation
capacity are reduced, possibly due to local anesthesia,
which can negatively impact their survival and quan-
tity 43,55–57 (Table 1).

MenSCs
Since the need for surgery complicates MSC isolation
from bone marrow, adipose tissue, or amniotic fluid,
it was necessary to find more accessible alternative
sources of MSCs58. Recent studies have shown that
endometrial basal layer cells have stem cell character-
istics such as self-renewal and proliferation59. En-
dometrial stem cells are new objects in treating in-
fertility (of unclear origin) in women. However, a
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biopsy or cuvette to access the endometrial stem cells
may harm the endometrium60. Interestingly, Men-
SCs are functionally and morphologically similar to
endometrial stem cells. MenSCs match the Interna-
tional Society for Cell and Gene Therapy criteria for
MSC characteristics and express dual ESC and MSC
markers61. They proliferate twice as fast and regen-
erate better than BMSCs and MSCs. This prolifer-
ation rate is superior for clinical use because when
many stem cells can be quickly isolated from the same
source, it is a noninvasive, painless procedure with no
ethical issues62,63.
MenSCs can be used as ideal MSCs for treating en-
dometrial infertility. In a nude mouse model with
endometrial damage, MenSCs survived in the en-
dometrium after transplantation38. Furthermore,
they improved the rate of embryo implantation by
upregulating the levels of keratin, vimentin, and
VEGF in the endometrium and increasing endome-
trial thickness by regulating a protein kinase B
(PKB/AKT)-related signaling pathway 38,64 because
this kinase plays an important role in cell survival,
proliferation, and metabolism65.
A clinical trial on patients with severe AS reported
promising results after the transplantation of autolo-
gous MenSCs. They showed that MenSCs increased
endometrial thickness and improved the rate and
quality of pregnancy in patients with AS66. Unlike
BMSCs, AMSCs, and UCMSCs, MenSCs have shown
no limitations in accessibility, collection, prolifera-
tion rate in vitro, or heterogeneity. However, further
basic and clinical studies are needed (Table 1).

UCMSCs
Human UCMSCs (hUCMSCs), also called Wharton
jelly MSCs, can be obtained from newborns’ cord tis-
sue. HUCMSCs have stem cell characteristics such
as high proliferation, differentiation potency, low
immunogenicity, and prolonged survival time after
transplantation67.
Since hUCMSCs are safe and effective, their use has
been considered to treat infertility. HUCMSCs re-
paired damaged endometrium in an animal model68.
They also increased the rate of implanted embryos
by upregulating vascular and downregulating pro-
inflammatory factors69. It has also been shown that
uterine niches formed in animals after a cesarean
could be effectively treated by intramuscular injection
of hUCMSCs70. In clinical trials on patients with
IUA, hUCMSC-loaded biodegradable collagen scaf-
folds have been safely and efficiently implanted into
the patient’s uterine cavity. After transplantation, the

survival of the hUCMSCswasmaintained at the site of
endometrial damage57. These results indicate a hope-
ful future for IUA therapy and demonstrate that tissue
engineering with hUCMSCs can increase their thera-
peutic efficiency 71.
Besides the positive characteristics of UCMSCs, they
have disadvantages such as limited collection at birth
(attributed to uncertainty about the baby’s health),
low isolation efficiency, and high heterogeneity 72–74

(Table 1).

AMSCs
The amnion is usually discarded as medical waste af-
ter delivery. The amniotic tissue, a postpartum mem-
brane, is a rich resource of human MSCs called AM-
SCs (hAMSCs)75. HAMSCs have some advantages
over MSCs. Besides MSC properties, they also have
some ESC phenotypic properties. In addition, the
methods used to isolate hAMSCs are noninvasive,
safe, and without ethical issues. These superior prop-
erties make hAMSCs a good target for regenerative
medicine69,76.
In the chemotherapy-induced POI ratmodel, hAMSC
transplantation lessened ovarian injury and improved
ovarian function77. In an IUA rat model, hAMSC
transplantation downregulated pro-inflammatory cy-
tokines such as IL-1β and tumor necrosis factor-
α (TNF-α) and upregulated anti-inflammatory cy-
tokines such as IL-6 and basic fibroblast growth factor
(bFGF)78. These results show that hAMSC transplan-
tation could improve endometrial restoration, likely
due to their immunomodulatory characteristics79.
In the mouse model of age-related diminished
ovarian reserve, hAMSC transplantation improved
ovarian function and oocyte maturation by mod-
ifying the ovarian microenvironment through
the protein kinase, AMP-activated, alpha 2 cat-
alytic subunit (PRKAA2/AMPK)/forkhead box O3
(FOXO3/FOXO3A) signaling pathway 80.
Interestingly, the epithelial cells derived from am-
niotic tissue, called human amniotic epithelial cells
(hAECs), also exhibit stem cell features and have
the potential for cell-based therapy. Like hAMSCs
and all MSCs, hAECs have the potential for mul-
tipotential differentiation, immune regulation, and
low tumorigenicity 81. HAEC transplantation im-
proved endometrial morphology in IUAmouse mod-
els, possibly by stimulating endometrial stromal cells’
proliferation and angiogenesis and increasing en-
dometrium thickness58. Moreover, the transplanted
hAECs triggered endometrium autophagy in the IUA
mouse models, reducing the fibrotic region of the en-
dometrium and thereby improving infertility.
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Finally, the most important limitations of AMSCs in-
clude restricted pluripotency, reduced numbers with
aging, and limited expansion in vitro72,82 (Table 1).

PMSCs
The placenta is a temporary organ made with the
participation of fetal and maternal tissues that is ex-
creted after delivery. A population of MSCs can be
isolated from the human placenta, called PMSCs83.
This tissue is easily accessible (noninvasive) and abun-
dant. It has immunoregulating, self-renewing, and
differentiating properties. PMSCs are not donor-age-
dependent and express commonBMSCmarkers. Due
to their properties, PMSCs are an attractive source of
MSCs for stem cell-based therapy 84.
PMSCs have been shown to secrete several cytokines,
including colony-stimulating factor 3 (CSF3/G-CSF),
IL-6/-8/-10, and C-C motif chemokine ligand 5
(CCL5/RANTES)85. The secretion of KIT ligand
(KITLG/SCF) after PMSC transplantation promoted
oocyte survival, elevating the expression levels of lin-
28 homolog A (Lin28a), LIM homeobox protein 8
(Lhx8), NOBOX oogenesis homeobox (Nobox), and
nanos C2HC-type zinc finger 3 (Nanos3), thereby im-
proving ovarian function67. These findings suggest
that PMSC therapy could be used to treat individu-
als with infertility and ovarian dysfunction, such as
PCOS67.
Two clinical trials by Levy et al. evaluated the efficacy
and safety of PMSCs in treating men with Peyronie’s
disease86 and erectile dysfunction (ED)87, reporting
beneficial results as a nonsurgical treatment. These
two diseases do not inherently cause infertility. How-
ever, reports suggest that since these diseases may af-
fect the strength and completeness of ejaculation, they
can affect a man’s ability to conceive88.
However, most clinical trials on PMSCs are just at the
beginning of the path, do not yet have published re-
sults, and require further research89.

STEM CELLS’ PARACRINE
MECHANISM
Extracellular vesicles derived fromMSCs
Stem cells are widely used in reproductive medicine
and have direct and indirect (paracrine, such as cy-
tokines) therapeutic effects90. However, due to the
limitations of injecting living cells, it is likely better
to use their paracrine elements, such as extracellular
vesicles and microRNAs (miRNAs). Exosomes are a
well-characterized subset of extracellular vesicles that
are secreted by MSCs. They encompass various cellu-
lar compounds, including lipids, proteins, coding and

non-coding RNAs (mRNAs, tRNAs, and miRNAs),
DNA fragments, and cell surface proteins91. The
compounds present in various exosomes differ based
on the origin of the MSCs92. Since exosomes are im-
portant carrier organelles for intercellular cross-talk,
they play an important role in many physiological
functions93.
Specific surfacemolecules on exosomes facilitate their
interactionswith their target cells. They includeMHC
I and II molecules, galectin, integrin, intercellular ad-
hesion molecule 1 (ICAM1), and collagen94. Exo-
somes can trigger cell migration, proliferation, via-
bility, angiogenesis, oogenesis, spermatogenesis, and
acrosome reaction. They can alter different signal-
ing pathways and are involved in gene expression, im-
mune system downregulation, and embryo implan-
tation induction95. Exosomes have an important ef-
fect on the reproductive mechanism and can be used
to treat reproductive diseases such as POI and ED95.
In POI models, transplantation of hAMSC-derived
exosomes decreased apoptosis in tissue grafts by up-
regulating SMAD family member 5 (SMAD5) expres-
sion to downregulate caspase-3 (CASP3), caspase-
8 (CASP8), and Fas cell surface death receptor
(FAS)/Fas ligand (FASLG/FasL)96. HAMSC-derived
exosomes also upregulate SMAD family members 2
(SMAD2) and 3 (SMAD3), enhancing granulosa cell
(GC) proliferation, activating ovulation, and produc-
ing corpus luteum.
It has been suggested that an exosome combination
from several sources (MSCs, hUCMSCs, and bovine
granulosa) may be effective for treating astheno-
zoospermia because it could reduce the reactive oxy-
gen rate97. In addition, combining exosomes from
retinal astroglial, cardiomyocytes, andMSCswas suit-
able for treating endometriosis in male rats with type
2 diabetes. Combining these exosomes likely inhib-
ited induced cell death, macrophage infiltration, and
angiogenesis in the ectopic endometrium98–100.
Regarding mouse mating, tetraspanin proteins (e.g.,
CD81 and CD9) vital for oocyte fertilization are pro-
duced by oocyte-derived exosomes, and oocytes pro-
duced bymice lacking these proteins cannot fuse with
sperm101,102. Placenta-derived exosomes are impor-
tant in decreasing T regulatory cells and downreg-
ulating the maternal immune system during gesta-
tion103–105 by secretion of MHC-I, MHC-II, UL16
binding protein 1–5 (ULBP1–5), and FASLG105.
Overall, using exosomes is less risky and more fea-
sible than stem cells because they protect their con-
tents from damaging enzymes, do not induce inflam-
mation, and do not generate teratomas105.
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The role of microRNAs in driving MSC ther-
apeutic outcomes
Most of the therapeutic effects of MSCs are due to
paracrine producers, especially through the release of
soluble factors such as miRNAs and exosomal miR-
NAs. In other words, miRNAs mediate the effects of
MSCs and are therefore considered new therapeutic
factors106.
Studies have shown that miRNAs inhibit target
mRNA translation and thereby have a critical effect
on regulating stem cell differentiation and regener-
ation107. The miRNAs may show similar effects in
regulating stem cells’ pathological and physiological
features related to ovarian function. In female rats
with cyclophosphamide-induced POF, GC apoptosis
was associated with the upregulation of miR-21 in
BMSCs108. GCs are somatic steroidogenic cells sur-
rounding the oocytes and are essential for developing
oocytes since they generate nutrients and growth fac-
tors109. It has been shown that a high miR-21 level
in BMSCs reduces their expression of programmed
cell death protein 4 (PDCD4), inducing GC apopto-
sis and leading to abnormal oocyte development110.
In addition,miR-21 overexpression in BMSCsmay in-
crease estradiol and decrease follicle-stimulating hor-
mone levels108.
Besides cytoplasmic miRNAs, exosomal miRNAs can
modulate intercellular signal transduction and reg-
ulate molecular mechanisms in various diseases111.
Two studies have shown the role of some BMSC-
derived exosomal miRNAs in activating the restora-
tion of ovarian function in an animal model of POF4.
BMSC-derived exosomal miR-644-5p regulated tu-
mor protein p53 (TP53) signaling, inhibiting GC
death112. BMSC-derived exosomal miR-144-5p reg-
ulated phosphatase and tensin homolog (PTEN) in
rats with chemotherapy-induced POF, restoring ovar-
ian function. These findings show that gene ex-
pression regulation by miRNAs could be a subset of
BMSC-based therapy 113.

Co-transplantation of MSCs with other ele-
ments
The effectiveness of transplantation protocols com-
bined with other factors was examined in a rat
model. Treating IUA with MenSCs combined with
platelet-rich plasma (PRP) improved proliferation
and angiogenesis and morphologically restored the
endometrium108. In addition, combining estrogen
with ADSCs induced endometrial tissue regenera-
tion in a rat model38. Co-transplantation of PRP
and MSCs into an animal model of POI increased

IGF-1 and transforming growth factor (TGF)-β lev-
els and C-X-C motif chemokine ligand 12 (CXCL12)
expression (an anti-inflammatory chemokine). In-
deed, PRP reduced inflammatory responses and the
extent and number of follicular atresia114. Apply-
ing a collagen scaffold with ADSCs in preclinical ex-
periments on rats with POF led to long-term ADSC
maintenance in their ovaries. This long duration im-
proved ovarian function and fertility restoration in
rats115. Co-transplanting spermatogonial stem cells
with TGF-ß1-treated MSCs in mice improved fertil-
ity efficiency because TGF-ß1 treatment preferentially
conducts MSCs to the testis where their secretion el-
ements could recover the testicular niche116.

DELIVERY OFMSCS TO TREAT
INFERTILITY-RELATED DISORDERS
IN CLINICAL TRIALS
There have been tried and tested approaches in clini-
cal trials to deliver MSCs to the reproductive system:
(1) intra-tissue injection, (2) tissue intra-arterial in-
jection, and (3) an MSC-loaded collagen scaffold.
Most clinical trials have used intra-tissue injections.
MSCs have been transplanted into reproductive sys-
temorgans of womenwith POF under the guidance of
transvaginal sonography/ultrasound (NCT03033277,
NCT02603744, NCT04815213, and NCT04815213)
or via laparoscopy (NCT02062931). In women
with atrophic endometrium and AS, it has been
conducted through the uterine cervix under ultra-
sound guidance (NCT03166189 and ChiCTR-ONB-
15007464). MSCs have been injected into the rete
testis of men with azoospermia using a special sy-
ringe (NCT02025270). MSCs have also been in-
tracavernosally and intralesionally injected into men
with Peyronie’s disease and ED (NCT02395029 and
NCT02398370).
One clinical trial using MSCs to treat AS and en-
dometrial atrophy transplanted them into the spi-
ral arterioles of the uterus via tissue intra-arterial
injection to regenerate the endometrium de novo
(NCT02144987).
Other clinical trials have examined the safety and
efficiency of an approach combining a collagen
scaffold and MSCs. MSC-loaded collagen scaf-
folds have been transplanted into the uterine cav-
ity during hysteroscopy of women with a thin or
scarred endometrium (NCT03592849) andwith IUAs
(NCT02313415). Another clinical trial used this ap-
proach, giving women with POF a bilateral ovarian
injection of MSCs with an injectable collagen scaffold
(NCT02644447).
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As described above, all clinical trials on MSC ther-
apies for infertility have used local delivery meth-
ods. Those clinical trials did not explore the sys-
temic delivery of MSCs through intravenous injec-
tion. One of the strongest justifications for this is
that given the main challenge of MSCs —their po-
tential to trigger clotting in microvasculature leading
to impaired homing capacity—intravenous injection
of MSCs could make the treatment process inefficient
and challenging.

CONCLUSIONS
In summary, infertility is a medical/social problem
affecting many couples worldwide. Therefore, this
review offers a greater understanding of the role of
MSCs in infertility treatment and their limitations,
which should be considered before using MSCs in
clinical trials. Therefore, the appropriate MSC source
must be selected according to the priorities and lim-
itations of each MSC type and the therapeutic pur-
pose (tissue regeneration, paracrine pathway-like im-
munomodulation, or both) in the reproductive sys-
tem.
It appears that systemic intravascular delivery of
MSCs from various sources could be more challeng-
ing and inefficient than local delivery due to the limi-
tation of MSCs in clot formation, leading to impaired
homing capacity.
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