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ABSTRACT
Introduction: The vascular endothelium plays a pivotal role in maintaining vascular function
and physiological balance. The degradation and injury of endothelial cells are critical patholog-
ical events in the progression of vascular diseases, leading to cell death. One such cell death
mechanism, ferroptosis, is an iron-dependent form of necrosis characterized by extensive lipid
peroxidation-mediated membrane damage and the toxic effects of iron and lipid peroxidation.
Kaempferol, a flavonoid, is celebrated for its antioxidant, anti-inflammatory, and anti-cancer prop-
erties. Despite these benefits, the impact of Kaempferol on endothelial cell ferroptosis and its po-
tential therapeutic applications in vascular diseases have yet to be fully elucidated. Methods: Cell
viability was assessed using the Cell Counting Kit-8 (CCK-8) assay. Oxidative stress and lipid perox-
idation were measured using Dihydroethidium (DHE) and C11-BODIPY 581/591, respectively. The
protein and RNA levels of ferroptosis-associated molecules, including solute carrier family 7 mem-
ber 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), were determined throughWestern blotting
and real-time fluorescence quantitative polymerase chain reaction (qPCR).Results: Treatmentwith
a glutathione peroxidase 4 inhibitor (RSL3) led to rapid cytotoxicity in human umbilical vein en-
dothelial cells (HUVECs). Notably, Kaempferol demonstrated a significant protective effect against
RSL3-induced ferroptosis in HUVECs. Kaempferol treatment reduced the accumulation of reactive
oxygen species (ROS) and exhibited distinctive morphological changes associated with ferropto-
sis. Moreover, Kaempferol treatment resulted in the upregulation of SLC7A11 and GPX4 expression
in HUVECs, highlighting its potent ability to mitigate ferroptosis among tested flavonoids. Con-
clusions: Kaempferol effectively inhibited RSL3-induced ferroptosis in HUVECs by modulating the
expression of SLC7A11 and GPX4, thereby reducing lipid peroxidation. These findings underscore
the therapeutic potential of Kaempferol in the treatment of vascular diseases, paving the way for
its application in clinical settings.
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INTRODUCTION
The vascular endothelium, which is dynamic, diverse,
and widespread, plays a crucial role in secretion, pro-
duction, breakdown, and defense mechanisms1,2 .
Endothelial cells (ECs), forming the innermost layer
of all blood vessels, have direct exposure to chemicals
or particles within the circulatory system. They are
pivotal in promoting multi-organ health and home-
ostasis through the regulation of solute permeability,
shear stress response, vasodilatory tone maintenance,
and their ability to exhibit both anti-inflammatory
and pro-inflammatory, as well as antioxidant and pro-
oxidant activities3,4. Evidence increasingly supports
the involvement of endothelial cell death in the onset
and progression of vascular diseases5–7.
Cell death, an evolutionary conserved process, serves
to regulate cell populations by eliminating excessive,
damaged, or senescent cells8. Among the mecha-
nisms of cell death, regulated cell death (RCD) stands

out as crucial for maintaining tissue equilibrium and
is implicated in a multitude of diseases. RCD in-
cludes both apoptotic and non-apoptotic forms9,
with several non-apoptotic RCDs identified, such as
necroptosis, ferroptosis, pyroptosis, and autophagy-
dependent cell death10. Ferroptosis, a type of iron-
dependent regulated necrosis, stems from extensive
lipid peroxidation-induced membrane damage, caus-
ing iron and lipid peroxidation toxicity. This pro-
cess is evolutionarily conserved and vital in both the
development and pathogenesis of diverse organisms,
including plants and animals11. Ferroptosis regula-
tion involves enzymes like acyl-CoA synthetase long-
chain family member 4 (ACSL4), lysophosphatidyl-
choline acyltransferase 3 (LPCAT3), arachidonic acid
lipoxygenases (ALOXs), and glutathione peroxidase 4
(GPX4)12, highlighting the potential of targeting en-
dothelial cell death in vascular disease treatments.
Chinese medicines and their active components of-
fer a novel approach to modulating ferroptosis, char-
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acterized by diverse regulatory targets, structural sta-
bility, high safety profile, and affordability. Various
traditional Chinese medicine ingredients have shown
efficacy in disease treatment by targeting ferroptosis
pathways. For example, luteolin inhibits ferroptosis
in cardiac microvascular endothelial cells by enhanc-
ing interferon regulatory factor (IRF) in the context of
cardiac hypertrophy 13. Similarly, procyanidins (PCs)
counteract oxidative stress and ferroptosis through
the activation of the nuclear factor erythroid-derived
2-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway 14.
Investigating Chinese medicines’ intervention mech-
anisms in ferroptosis opens new avenues for the re-
search and development of innovative disease thera-
pies15.
Flavonoids, recognized for their potent antioxidant,
anti-inflammatory, anti-cancer, and anti-viral prop-
erties16, are abundantly found in fruits, vegetables,
and tea. Their medicinal benefits make them in-
tegral to pharmaceuticals, dietary supplements, and
beauty products17. Liu L et al. have compre-
hensively reviewed the regulatory functions of nat-
ural flavonoids on ferroptosis, underscoring their
clinical therapy potential18. Kaempferol, abun-
dant in plant-based foods like kale, broccoli, beans,
spinach, and tea19, illustrates the therapeutic spec-
trum of flavonoids, including anti-oxidative16, anti-
inflammatory 20, and anti-cancer effects21. Its effi-
cacy in managing conditions such as diabetes melli-
tus22, atherosclerosis23, and osteoporosis24 has been
well-documented. Furthermore, kaempferol’s neuro-
protective25 and liver26 and myocardium27 benefits
position it as a promising candidate for alleviating in-
flammatory responses28. Despite these findings, the
specific impact of kaempferol on endothelial cell fer-
roptosis and its potential in vascular disease therapy
warrants further exploration. This study aims to eluci-
date kaempferol’s protective mechanisms against en-
dothelial cell ferroptosis.

METHODS
Cell Culture
In our study, we utilized Human Umbilical Vein En-
dothelial Cells (HUVECs) sourced from our research
group’s cell bank. The culture method we employed
was based on the protocol described by Li et al.29. We
maintained HUVECs in a controlled environment at
37◦C within a 5% CO2 incubator, using Dulbecco’s
Modified Eagle’s Medium (DMEM; C11885500BT,
Gibco), enriched with 10% Fetal Bovine Serum (FBS;
FSP500, ExCell) and 1% Penicillin-Streptomycin So-
lution (P1400, Solarbio).

Cytotoxicity Assessment
For assessing cytotoxicity, we seeded HUVECs in 96-
well plates and treated them with varying concentra-
tions of kaempferol (ranging from 0.625 to 40 µM
in DMSO) for 24 hours. To evaluate cell viability,
we added 10 µ l of the Cell Counting Kit-8 (CCK-8;
40203ES60, YEASEN) solution to each well and incu-
bated them for 3 hours at 37◦C in a 5% CO2 environ-
ment. Subsequently, we measured the absorbance at
450 nm using a spectrophotometer.

Cell Survival Experiment
For the cell survival experiment, HUVECswere plated
in 96-well plates and treated either with the GSH
peroxidase 4 inhibitor RSL3 (Y-100218A, MCE) or
kaempferol. After incubation at 37◦C in a 5%CO2 in-
cubator for 3 hours, we measured absorbance at 450
nmusing a spectrophotometer for cell viability assess-
ment.

Detection of Reactive Oxygen Species
(ROS)
To detect ROS production, we utilized the Superoxide
Anion Probe Dihydroethidium (DHE) assay 30. This
involved culturing HUVECs and subsequently incu-
bating them with 10 µM DHE (S0063, Beyotime) at
37◦C for 30 minutes. After washing the cells twice
with phosphate-buffered saline (PBS) and fixing them
with 4% paraformaldehyde for 30minutes, we applied
an anti-fluorescence quenching agent containing 4’,6-
diamidino-2-phenylindole (DAPI) (ZLI-9556, ZSGB-
BIO) for counter-staining. We then examined and
photographed the cells under a confocal microscope.

Lipid PeroxidationMeasurement

Following the methodology of Mei et al.31, we de-
tected lipid peroxidation using the C11 BODIPY
581/591 indicator. After pretreating HUVECs, we
added C11 BODIPY 581/591 (D3861, Invitrogen) at
a final concentration of 5 µM to the culture medium
and co-incubated it for one hour at 37◦C. We washed
the cells twice with PBS, treated them with trypsin,
resuspended them in PBS containing 5% FBS, and fi-
nally analyzed them using flow cytometry.

Western Blot Analysis
We analyzed the intracellular protein content us-
ing the Western Blot technique32. After pretreat-
ment, HUVECs were lysed with RIPA buffer con-
taining protease inhibitors on ice for 30 minutes.
The proteins were then separated by SDS-PAGE and
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transferred onto PVDF membranes. After block-
ing with 5% skim milk, the membranes were in-
cubated with primary antibodies against SLC7A11
(ab175186, Abcam), GPX4 (A1933, ABclonal), and
GAPDH (A19056, ABclonal) overnight at 4◦C, us-
ing a 1:1000 dilution. The next day, we incubated
the membranes with an HRP-conjugated Goat Anti-
Rabbit secondary antibody (RGAR001, Proteintech)
at a 1:10,000 dilution for one hour at room temper-
ature. Detection was achieved using a chemilumi-
nescent substrate. GAPDH served as a loading con-
trol33,34, and the bands were quantitatively analyzed
using ImageJ software (version 1.4.3.67).

Realtime Fluorescence Quantitative PCR
(qPCR)

We extracted total RNA using TRI Reagent (T9424,
Sigma) and synthesized cDNA with TransScript®
One-Step gDNA Removal and cDNA Synthesis Su-
perMix (AT311-02, Transgen). We performed qPCR
using the QuantStudioTM 3 System and PerfectStart®
Green qPCR SuperMix (+Universal Passive Refer-
ence Dye) (AQ602-01, Transgen), detecting fluores-
cence with SYBR Green. The amplification efficiency
was calculated as E = 10(−1/k)-1, with efficiencies
for SLC7A11 and GPX4 at 99.8% and 102.7%, re-
spectively. We normalized the expression levels of
SLC7A11 and GPX4 mRNAs to β -actin mRNA us-
ing the 2−∆∆Ct method and employed the following
primers for qPCR:
- β -actin:
- Forward: 5′-CCTGGCACCCAGCACAAT-3′

- Reverse: 5′-GGGCCGGACTCGTCATAC-3′

- SLC7A11:
- Forward: 5′-ATGCAGTGGCAGTGACCTTT-3′

- Reverse: 5′-CATGGAGCCAAAGCAGGAGA-3′

- GPX4:
- Forward: 5′-GAAGATCCAACCCAAGGGCA-3′

- Reverse: 5′-GACGGTGTCCAAACTTGGTG-3′

Statistical Analysis

We meticulously analyzed all data to ensure a nor-
mal distribution and presented the results as the
mean ± standard deviation (SD). Statistical signifi-
cance was determined using Student’s t-test or one-
way ANOVA, followed by post-hoc testing. We uti-
lized Pearson’s product-moment correlation for cor-
relation analyses. All statistical procedures were con-
ducted using GraphPad Prism version 8.0.2, consid-
ering p-values of < 0.05 as statistically significant.

RESULTS

Kaempferol Protects HUVECs from RSL-3-
Induced Ferroptosis

Ferroptosis was induced in HUVECs using different
concentrations of RSL-3 (DMSO, 0.125, 0.25, 0.5, and
1 µM). A dose-dependent decrease in cell viability
in HUVECs was detected. The LD50 of RSL-3 in
cell viability was achieved at a concentration of 0.25
µM. Subsequent induction experiments were carried
out using this concentration (Figure 1A). To screen
for the most active flavonoids, HUVECs were treated
with different flavonoid components and co-cultured
with RSL-3 for 24 hours. Kaempferol demonstrated
the strongest ability to rescue the RSL-3-induced fer-
roptosis (Figure 1B). Figure 1C shows the chemical
structural formula of Kaempferol.

Kaempferol Shows Low Toxicity in HUVEC
Culture

The toxicity of kaempferol on HUVECs was ana-
lyzed using the CCK-8 assay. HUVECs were treated
with different concentrations of kaempferol (DMSO,
0.625, 1.25, 2.5, 5, 10, 20, and 40 µM) for 24 hours,
and the cell viability was analyzed. Interestingly,
kaempferol showed no toxicity, but a slight growth-
promoting effect (Figure 2A). Moreover, kaempferol
was shown to resist ferroptosis and effectively rescue
HUVECs similar to the control group at a concentra-
tion of 5 µM. The subsequent experiments were per-
formedwith this concentration to rescueHUVEC fer-
roptosis (Figure 2B).

Kaempferol Reduces ROS Generation in
RSL-3-Treated HUVECs

Ferroptosis is a ROS-dependent, non-apoptotic, lipid-
peroxidation-induced cell death closely related to the
intracellular ROS content35,36. ROS are generated
during normal physiological processes and are essen-
tial for cell signaling and tissue homeostasis37. The
C11 BODIPY 581/591 and DHE assays were used to
determine the lipid oxidation profiles and oxidative
stress in HUVECs, respectively. The results showed
that the fluorescence intensity of DHE increased sig-
nificantly following RSL-3 treatment and C11 BOD-
IPY 581/591 addition, whereas both DHE and C11
BODIPY 581/591 decreased significantly upon treat-
ment with kaempferol, indicating the antioxidant ca-
pacity of kaempferol (Figure 3).

6341



Biomedical Research and Therapy 2024, 11(4):6339-6347

Figure 1: Anti-ferroptosis assay of kaempferol. A. Cell survival was determined by CCK8 assay after treatment
of human umbilical vein endothelial cells (HUVECs) with ��erent concentrations of GSH peroxidase 4 inhibitor
(RSL3) for 24 h (n=5). ∗vs control. B. Cell survival was determined by co-culturing ��vonoid fractions with RSL3 for
24 h (n=3). ∗vs control #vs RSL3. C. Structural formula of kaempferol. (∗∗∗p<0.001, #p<0.05, ##p<0.01, ###p<0.001).

Figure 2: Kaempferol shows low toxicity. A. Cell survival was determined after 24 h treatment ofHUVECs with
��erent concentrations of kaempferol to detect the kaempferoltoxicity (n=5). B. Cell survival was determined
after treating HUVECs with RSL3 (0.25 µM) plusDMSO and kaempferol (1, 2.5, and 5 µM) for 24 h (n=5). ∗vs control,
#vs RSL3 (###p<0.001,∗∗∗p<0.001).

Kaempferol Inhibits Ferroptosis byUpregu-
lating SLC7A11 and GPX4
The protein expression of SLC7A11 and GPX4 was
significantly downregulated in the RSL-3 group.
However, treatment with kaempferol restored the
protein levels to that of the control, suggesting
that kaempferol inhibits ferroptosis in HUVECs
(Figure 4A, B, C). This correlation was also verified
at the RNA level, with qPCR results being consistent
with the western blot findings (Figure 4 D, E).

DISCUSSION
The pathology of vascular diseases often involves the
dysregulation of endothelial cell death, making the
study of endothelial cell death models crucial for the
identification of effective treatments for such diseases.
Human Umbilical Vein Endothelial Cells (HUVECs)
are frequently utilized in research on cell biology
within the contexts of angiogenesis, vascular diseases,

and cardiovascular diseases38. Due to their superior
proliferation and migration abilities, as well as their
capacity to form in vitro tubular structures resembling
angiogenesis, HUVECs are considered ideal models
for exploring endothelial cell death38.
Ferroptosis, a form of non-apoptotic cell death char-
acterized by iron-dependent lipid peroxidation, is
distinguished by an accumulation of lipid peroxides
leading to cell swelling and the subsequent rupture of
the cell membrane8,39. The process of lipid peroxi-
dation is fundamental to ferroptosis40. Compounds
such as RSL3 and erastin, known inducers of ferrop-
tosis, are employed to develop cell models for this
form of cell death. Erastin targets System Xc- activ-
ity to disrupt glutathione (GSH) synthesis, a pathway
leading to ferroptosis41, whereas RSL3, by directly in-
hibiting GPX4, activates iron-dependent, nonapop-
totic cell death in cells withRASmutations42,43 and in
various cell types44,45. Observations of morphologi-
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Figure 3: The role of kaempferol in inhibiting lipid oxidation. HUVECs were treated with RSL3 (0.25 µM) plus
DMSO and kaempferol (5 µM) for 24 h for subsequent assays. The antioxidant capacity of kaempferol was evalu-
ated by DHE (A) and C11 BODIPY 581/591 (B) assays.

cal changes, including cell and mitochondrial shrink-
age as well as cell membrane damage, in HUVECs
treated with RSL3 confirm its efficacy in creating an
ideal model for endothelial cell ferroptosis.
Recent decades have seen the identification of phar-
macological and natural compounds capable of mod-
ulating ferroptosis46,47. Among these, kaempferol,
a compound found in abundance in fruits, vegeta-
bles, and herbs, stands out for its minimal toxicity
and promising therapeutic potential48. Its mech-
anisms involve the promotion of free radical scav-
enging, enhancement of antioxidant enzyme activ-
ities against lipid peroxidation, and prevention of
hemolysis49. Moreover, kaempferol acts protec-
tively in ischemic stroke by activating specific sig-
naling pathways (Nrf2/SLC7A11/GPX4) to mitigate
oxygen-glucose deprivation/reperfusion-induced cel-
lular damage and suppress ferroptosis initiation50.
Additionally, it reverses adverse effects such as hep-
atic iron overload and oxidative stress induced by ac-
etaminophen in mice, showcasing its ability to re-

duce intracellular ROS accumulation, trigger theNrf2
pathway, upregulate GPX4, and prevent hepatocyte
ferroptosis51. Through our research, using HUVECs
as a model, we established kaempferol’s efficacy in
attenuating RSL3-induced cell death, highlighting its
potential in the treatment of vascular diseases through
ferroptosis inhibition.
In exploring ferroptosis further, we discovered it to
be a reactive oxygen species (ROS)-dependent cell
demise mechanism, exacerbating oxidative damage
through excessive ROS generation via the Fenton re-
action52,53. Our investigation into the impact of
kaempferol on lipid peroxidation, utilizing assays like
DHE for intracellular ROS levels30 andC11-BODIPY
for lipid peroxidation40, confirmed significant inhibi-
tion of RSL3-induced lipid peroxidation in HUVECs.
Multiple regulatory signals such as GPX4 and
SLC7A11 are involved in the regulation of cell ferrop-
tosis54. The GSH–GPX4 limits membrane lipid per-
oxidation via targeting System Xc¯cystine/glutamate
antiporter55,56. SLC7A11 maintains the production
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Figure 4: Kaempferol regulates ferroptosis-associated proteins to inhibit ferroptosis. HUVECs were treated
with RSL3 (0.25 µM) plus DMSO and kaempferol (2.5 µM and 5 µM) for 24 h for subsequent assays. A. Pro-
tein expression of ferroptosis-associated proteins detected by Western blot analysis. B. Gray scale value anal-
ysis of solute carrier family 7 member 11 (SLC7A11). C. Gray scale value analysis of glutathione peroxidase 4
(GPX4). D. Expression of SLC7A11 at the RNA level. E. Expression of GPX4 at the RNA level ∗vs control, #vs RSL3
(###p<0.001,∗∗∗p<0.001)

of GSH, a major endogenous antioxidant, through
a series of reactions involving the exchange of
extracellular cysteine with intracellular glutamate46.
Inhibiting the SLC7A11 pathway stands out as a
critical upstream mechanism for inducing ferrop-
tosis57. The expression of GPX4 and SLC7A11 at
both protein and RNA levels was investigated in
RSL3-treated HUEVCs. This study also provides
evidence that kaempferol could significantly protect
HUEVCs ferroptosis through the regulation of GPX4
and SLC7A11 expression.
The implications of endothelial cell ferroptosis ex-
tend to a variety of vascular-related conditions, in-
cluding peripheral vascular disease58, stroke59, heart
disease60, diabetes61, venous thrombosis62, tumor
growth63, and metastasis64, making the targeting of
endothelial cell ferroptosis a novel therapeutic strat-
egy. Kaempferol’s multi-faceted pharmacological ef-
fects, combined with its minimal toxicity, endow it
with significant potential in both health food and
pharmaceutical sectors51.
In previous studies, kaempferol has shown poten-
tial effectiveness in the treatment of diseases such
as Alzheimer’s disease65 and colon cancer. It
exhibits various effects such as antioxidant, anti-
inflammatory, anti-tumor, and promotion of glu-

cose metabolism by regulating multiple signaling
pathways such as Nrf2/SLC7A11/GPX4, Toll-like
receptor 4 (TLR4)/ nuclear factor kappa-B (NF-
κB), immunoglobulin-regulated enhancer 1 (IRE1)/
c-Jun N-terminal kinase (JNK)/ C/EBP homology
protein (CHOP), and mitogen-activated protein ki-
nases (MAPKs). In addition, compared with some
chemotherapeutic agents, kaempferol is not toxic to
normal cells66 and appears to be relatively safe at cer-
tain doses67. However, clinical trials of kaempferol
on humans are still scarce and remain controver-
sial, as most studies are based on animal models or
in vitro experiments. More studies are still needed
to determine its safety, pharmacokinetics and poten-
tial adverse effects in humans. In addition, although
kaempferol has shown potential therapeutic effects in
vitro and in vivo models, there is a lack of clinical
trial validation, and thereforemore human studies are
needed to confirm its efficacy and safety in clinical ap-
plications.
The present study had a limited experimental model
and did not elucidate the molecular mechanisms of
kaempferol in depth. Future studies could further ex-
plore the molecular mechanisms and interactions of
kaempferol in regulating signaling pathways and in-
hibiting iron death, as well as the targets and biolog-
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ical effects of kaempferol. This will contribute to a
better understanding of the mechanism of action of
kaempferol and provide a more scientific basis for its
future clinical applications.

CONCLUSIONS
We uncovered the protective role of kaempferol in
safeguarding human umbilical vein endothelial cells
(HUVECs) from ferroptosis, an iron-dependent form
of cell death. This protective mechanism functions
through the modulation of GPX4 and SLC7A11, cru-
cial elements in the cell’s defense against ferroptosis.
These insights broaden our comprehension of ferrop-
tosismechanisms and position kaempferol as a poten-
tial therapeutic candidate for drug development.

ABBREVIATIONS
ALOXs - Arachidonic Acid Lipoxygenases, ANOVA
- Analysis of Variance,ACSL4 - Acyl-CoA Synthetase
Long-Chain Family Member 4, CCK-8 - Cell Count-
ing Kit-8, DAPI - 4’,6-diamidino-2-phenylindole,
DMEM - Dulbecco’s Modified Eagle’s Medium, DHE
- Dihydroethidium, FBS - Fetal Bovine Serum,GSH -
Glutathione, GPX4 - Glutathione Peroxidase 4, HO-
1 - Heme Oxygenase-1, HRP - Horseradish Perox-
idase, HUVECs - Human Umbilical Vein Endothe-
lial Cells, IRF - Interferon Regulatory Factor, LP-
CAT3 - Lysophosphatidylcholine Acyltransferase 3,
Nrf2 - Nuclear Factor Erythroid-Derived 2-Like 2,
PBS - Phosphate-Buffered Saline,PCs - Procyanidins,
PVDF - Polyvinylidene Difluoride, qPCR - Real-
Time Fluorescence Quantitative Polymerase Chain
Reaction, RCD - Regulated Cell Death, RIPA - Ra-
dioimmunoprecipitation Assay Buffer, ROS - Reac-
tive Oxygen Species, SD - Standard Deviation, SDS-
PAGE - Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis, SLC7A11 - Solute Carrier Family 7
Member 11
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