Shuhaidatul Sarmiza Abdul Halim, N. ., Wisasi, M. ., Rungsisiwut, R. ., Mohamed, R. ., Shaharuddin, B. ., Suwan, N. ., Fitriyani Afiqah Abu Bakar, N. ., Ghozali, M. ., Atik, N., Rizky AA Syamsunarno, M. ., Supokawej, A. ., & Hisham Yahaya, B. . (2025). Revolutionizing Breast Cancer Treatment: The Role of Regenerative Medicine. *Biomedical Research and Therapy*, *12*(6), 7489-7498. <u>https://doi.org/10.15419/tjcsrg93</u>

Supplementary

Table S1. Experimental data from preclinical studies investigating scaffold–cell systems for breast tissue engineering. The table includes scaffold types, cell models, study phases, and observed biological outcomes, with matched peer-reviewed references.

Scaffold	Cell Type	Phase of Study	Summary	Reference
with Polydopamine	epithelial cells $(MCE_{-}10A)$	vitro and in vivo (mice	The 3D-printed Alg-PDA scaffold showed flexibility and modulus similar to breast tissue. Enhanced adhesion and proliferation of MCF-10A cells.	1
Alginate Modified with Laminin (G- LAMS)	ADSCs + Rg1	vivo (rat model)	Bio-electrospray synthesized ADSC-G- LAMS microspheres demonstrated no toxicity, creating a conducive microenvironment for ADSC proliferation.	1
Poly(urethane)-based scaffolds	Cell-free	vitro and in vivo (murine	Cross-linked by TEMED, showing slow infiltration of undifferentiated mesenchymal cells and formation of a vascular network to support viability.	1
Poly(DL)-lactide polymer	umbilical cord perivascular and endothelial	vitro and in vivo (athymic	3D-printed polymer seeded with endothelial cells demonstrated functional capillary network formation and increased adipose tissue area.	2
Devitalized ECM hybrid with RGD- poly(amidoamine) foam (ECM-OPAAF)	hADSCs	Preclinical in vitro and in vivo (nude mouse model)	ECM-OPAAF scaffold regulated adipogenesis and hADSC infiltration.	1

Scaffold	Cell Type	Phase of Study	Summary	Reference
	MC3T3-E1 cells	In vitro	PLA scaffold incubated in Gel-MOD and Li-TPO-L media showed 40% cell viability after one month, with cells stretching along the scaffold.	1
Silk Fibroin Hydrogel	Human fibroblasts		Silk fibroin scaffold supported adipose tissue growth and growth factor release.	3
Decellularized Adipose Tissue (DAT) Scaffold	ADSCs	vitro and in	DAT scaffold supported ADSC viability and differentiation, ideal for soft tissue regeneration.	4
Gelatin Methacryloyl (GelMA)	ADSUS		GelMA hydrogel supported ADSC growth and adipogenic differentiation.	3

Refs

 Markovic M, Van Hoorick J, Hölzl K, Tromayer M, Gruber P, Nürnberger S, et al. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation. J Nanotechnol Eng Med. 2015;

2. Chhaya MP, Melchels FPW, Holzapfel BM, Baldwin JG, Hutmacher DW. Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials. 2015;

3. Conci C, Bennati L, Bregoli C, Buccino F, Danielli F, Gallan M, et al. Tissue engineering and regenerative medicine strategies for the female breast. Journal of Tissue Engineering and Regenerative Medicine. 2020.

4. Jain S, Yassin MA, Fuoco T, Liu H, Mohamed-Ahmed S, Mustafa K, et al. Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification. J Tissue Eng. 2020;